Relaxation-Based Algorithms

Hedaxation-based algorithms for resource-constrained projoect schodnling with
regular or convexifiable objective fhnctions rely on the first basic represen-
tation of the sct & of all feasible schedules ag a nniou of relation polytopes.
By deleting the resource constraints we obtain the resource relaxation, which
eoincides with the thne-coustrained project scheduling problem. The latter
problem can be solved eficiently by computing the minimal point F5 of set Sy
if {1 regular or some local ninimizer of the objective function f in set & if
£ 15 convexifiable, Clearly, the tractability of the problem is preseived when
moving from set Sp to arbitrary nonempty relation polytopes Se(p). Starting
with the resource relaxation, Le, with the ompty relation, relaxation-based
algorithmns iteratively pnt the resource constraints mto force by branching
over thue-feasible extensions p' of the respective parent relation p. Bach re-
lation ¢ defines a collection of precedence constraints that break up some
forbidden active set A{5. 1) balonging to a minimizer S of f on search space
P = Sy(p). The branching process is coutined umil efther Sy(p) = @ or the
mimimzer § of f on Sy{p) is feasible. The latter condition is necessarily sat-
ified as soon as relation p g feasible. Note, however, that schedule S may be
feasible even before p has been extended to a feasible velation. When dealing
with regnlar objective funetions, the ordinary precedence eonstraints given by
relations p may be veplaced by disinnctive procedence constraints {of. Subsec
tions 1.2.3 and 1.3.3). Since a digjundiive precedence consiraing corresponds
to the disjunction of several ordinary precedence constraints, branching fs
then performaed over yety of relations and consequently, the search spaces P
on which f is to he niniimized represent untons of relation polytopes.

From now on we assume that the project nnder consideration comprises
renewable and camunlative resonrees, where the renewable resources are used
by real activities ¢ € V® and the camnlative resources are depleted and re-
plenisliod by events ¢ € V¢ Accordingly, for given schedule 5 the active sets

ABH = eV | S <t<SiplulieVls, <t
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ab times € contain both real activities and events, and resource-leasible schoed-
ules satisfy both the renewable-resource constrannts {1.7) and the cumnlative

Sy O 8p 1 8. As & straightforward extension of the definitions from Sub-
sections 2,11 and 2.1.2, we say that a relation p i sef Vs time-feasible
i Splp) # § and is feasible if § % Sp{p) € 8. It is easily seen Lhat first,
relation g is again time-feasible precisely if relation network N{p) does not
cortain any cycie of positive length and that second, a time-feasible relation p
is feasible exactly if both induced sub-relations pr{ Ve x VoY and pn{Vex V)
arc feasible In the sense of Definitions 2.3 and 2.17. As a conseqnence of the
Iatter statement, the {easibility of a thne-feasible relation g in set V can he
verified by sequentially applving the network flow technignes discnssed in
Subsections 2.1.1 and 2.1.2 to the respective snb-relations.

The resource-constrained project scheduling problem to he dealt with reads
as follows:

Minimize  f{5) P
gubject 50 S €SP 8N Se '

where f is some regular ov convexifiable obloctive funciion, In Section 3.1
wo tread the case of regular objective Amctions. Scetion 3.2 iy devoted to
convexiliable objective functions.

3.1 Regular Objective Functions

We first develop an enmmeralion schemo based on the concept of disjunctive
precedence constrabilys that either generates a set of candidate schednles con-
taining an optimal schedule or proves that there is no feasible schedule for the
project nnder consideration. We are then concerned with the relaxation to be
solved at each emumeration node. The latter problem amounts to minimizing
a regilar objective function subject to temporal and digjunctive precedence
constraints, Next, we discuss the oxlension of the eimmeration scheme Lo a
branch-and-hound algorithm and review alternative solntion procedures for
resource-constrained project scheduling with regular objective funclions.

3.1.1 Enumeration Scheme

In this subsection we are concerned with an ompneration scheme for probe
lem (P) with regular objective function f wiich forms the bagis of branch-and-
bound procedures by Schwindt {1988¢) snd Neumann and Schwindt (2002}
for solving the project duration problem with resewable or cumulative re-
sources, respoctively, Consider an optimal solution S to the thne-constrained
projecl schednling problen: (1.2} with a regular objective Dumction f, eg,
5w B8 = minSp. B § satisfies the renewable-resonree constraints (1.7) and
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the enmnlative-resonrce constraints (1.20), 9 s an optimal schedule, Other-
wise, there is some point in time £ € [0,d] such that F = A(S ) 0 V® ar
F o A(S8) N1V represents a forhidden sel. 1o the former case, the joint
requiremoents by real activities ¢ € F exceed the capacity of some rencwable
resanree & € RP, and in the latter ease, the depletions and replenishments
hy events ¢ € F create a surplus or a shortage in sowe cumnlative resonree
k€ RY. Forbidden set ' can be hroken up by imtradneing a disjunctive proce-
denee canstraint (see Subsections 1.2.3 and 1.3.53)

mins; = mm(‘; + i) {3.1)

ol i
hetween some appropriate set A and a minimal delaying alternative B where
hy definitionp; = 0 far i € V© If resource & Is renewable, we choose 4 1= F\B
Otherwise, we it A = VE \ F I F is a kesarplus set and A = Va \Ff
Fis a k-shortage set, Let

P(A,B) w= U {{i} % B)

A

denate the set of rreflexive relations {4} x B with ¢ ¢ A, which each give
rise to the {ordmary) procedence constrainis betwoeen activity ¢ and all ac-
tivities 7 € B. Intreducing disinnstive precedence constraint {3.1) refines the
resouree relaxation by restricting the initial searely space P = Sp to the seb
af all schedules 5 cantained in the nnion of relation palytapes Sy{p) with
pe P{ABY

After the selection of & winimal delaying aliernative B, we minimize f on
the restricted search space, Checking the resonrce-feasibility of the resnlting
minimizer, refining the relaxation by disjunctive precedence canstraints, and
re-optimizing £ on the restricted search space is performed wntit either the
search space has bocae vaid ar the resulting minimizer § of f is resource-
feasible. The dishunctive precedence constrainis are represented as a collec-
tion I of relations p whose relation palytopes Sp{p} cover the seareh space.
I each iteration, when adding a disjunctive precedence canstraint of type (3.1}
we put P P& PLA, B) where P o {8} at the root node and

P®P(AB) = U {eug}
PGP0 G P(AB)

As we shall see in Subsection 3.1.2, each of the nonemnpty search spaces P
UpepSr{p) generated in this way possesses a unigue mninimal point, which
represents a minimizer 5 of [ on st P,

We now consider the ennmeration scheme in mare detail. The correspand-
ing pracednre is given by Algaritlong 3.1, Let @ denabe a list of relation sets P
in set V and let € designate the set of candidate schednles generated, Starting
with ¢ = {{#1} and C = §, at cach iteration we remove some relation set P
from Q and solve the relaxation hy elther computing the minimal poimt 5
af search space P = U,epSyp{p) ar showing that P = @ In the latter case,
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we write § = 5% = (o0,...,o0) For § < 5%, we procecd as follows. If
schedule § s resonrce-feagible, we have found a candidate scliedule and pat
C = C {5}, Otherwise, there is a start time £ = 57 of some activity ¢ e V
such that active sel A(S 2} includes a forbidden set of real activities or a
forbidden set of events. In the forner case, we compute the set B all minhnal

wise, F e A(8,£Y01V¥ is a k-surplus or a k-shortage set {or same cunulative
resonrce & & RY, and calling Algorithm 1.6 provides the set B of all mini-
mal delayiug alternatives for F and k. For each minimal delaying alternative
B e B we then intrednce diginnetive precedence constraint {3.1} between the

expanded relation set P on Bist (). We return to the {refined) relaxation aud
refterate those steps wtil all relation sets P m list ¢ have been investigated,
Le., until @ = & Finally, we retirn the set C of all candidate schedules found,

Algorithm 3.1, Fmuneration scheme for regular objective funetions

Input: A project.
Output: Set ¢ of candidate schednles.

mitialize list of relation sets € = {{#}} and set of candidate schedules ( :=;
repeat
delete some relation set P from Hsy )
determing schedule 5 = minfi),c pSr{p);
if 5 < 8% then {*search space is nonempty =}
if §is resource-feasible then  := C U {5}, {s candidate schedule found )
elge {+introduce disjunctive precedence constralngs +}
detennine time § such that resonree constraints {1.7) or (1.20) are violated
for smne K € RPUR™,
if ke R° then
set F = A(S 6 n V™,
conipute set B of all minimal delaying alternatives for F;
{x Algorithm F.d=)
else
set = ALS N Ve,
compute set B of all minimal delaying alternatives for F aud &
{* Algorithm 1.6)
for all B 6 deo
if k¢ RP then set 4
else sot A = VO,
set P\o= P PLABY and add P oon list ¢
until @ =&
returs

VT

The following proposition establishes the correctness of the cimmeration
scherme from Algorithm 3.1,
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Proposition 3.1 (Neumann et al. 20035, Sect. 2.5). Lef C be the set of
candidate schodules generated by Algorithm 3.1 and lel Q8 denote the set of
afl opfimal schedules.

(n) Algorithin 3.1 is finite,
(E'}) xﬁqof"iffnn 3.1is mmg:leic b, C oS = @ z’f fmd (ml-a; ?'f S =,

Proof.

{a) At each iteration a relation set P ig removed from list ¢ and a fintte -
ber of expanded relation sets P ave added to . For cach p & P, sets P
contain a relation o' 7 p each, Since the cardinality of any brreflexive re-
lation m set V' is bonuded from above by {n-+ 1)+ 2}, this implies that
the munber of iterations performed by Algorithm 3.1 iy finite.

Clently, the search space P s Sp{§) = Sr associated with the mnitial
relation set P = {f} is a superset of the feasible region & and thuos
S Spiin S, N{}w et 8§ be the minimal point of seme search space P
ommuerated in the course of Algorithm 3.1, If 5 & not vesonrce-feasible,

there is a tiine £ such that active set A(S, £} includes a forbidden set F I.,et
B be the set of mimmal delaying alternatives for F. Then Theorems 1.17
and 1.28 say that any resonrce-feasible schedule m set P sabisBies one of
the digjunctive precedence constraints (3.1) with B € B and appropriate
set A. Since in addition all ennerated schedules § minimize f on the
respective search spaces, there is at least one opthnal candidate schedule
S5 & C provided that § % . Conversely, all candidate schedules 8 € €
are fo%zi)f-; and the E{}woz wmzmuhumw of f nnphu—» lei QS8 == ¢ only

(b

P

{c} lf@ciz candzd&t;e sn(.hcdaﬁe S e C is %he mmmmi pomt of some relation
polytope Spip) and feasible. Due to #(5) 2 p and thus Sp{8(5)) ¢ Sr(p),
it follows from 5 € Sp(#(S)) that 5 is the minimal point of its schedule
polytope Sp{H5}) as well, Lo, 5 € QAS. [

We notice that as a direct consequence of the proof of Proposition 3.1a,
the maxihmum depth of the enumeration tree generated by Algorithm 3.1 s
Ofn?). Moreover, the candidate schednles § € € are generally not active
bt only guasiactive. Recall thal already deciding on whether or 5ot a given
feasible schedule is active constitutes an NP-hard problem.

3.1.2 Bolving the Relaxations

In this subsection we are concerned with the problem of minimizing & reg-
ular objective function f on a search space P defined by temporal con-
straints and disjunetive precedence constraints, We assime that the dis-
jmnetive precedence constraints are given by a collection of » relation sets

P{Ay By, . L P(AL By with PLA,, By = Ui, ({81 < By for s 1, 0
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With P = &, P{A,. B,) we then have
7:) = L}{,GP‘ST(‘(}) = (?;ml U\‘-GAV, &g]“({f} ot ‘BH)
Proposition 3.2 (Neumann and Schwindt 2002}, Let ¥ be the operator

on partiolly ordered sel {%’;go <} with $H{8Y = (¢;(S))sev and

PERY=y: |
jeB,.

;{ S} = max (0, njax {Si+ i3, e mm{S +py) {jeV)

{a} If P o O, set P has o unique minimal poind 5.

(b} 4 possesses a fived poind if and only o P 3 8. Minimal point 87 coincides
with the unigue fived point § of ¢ with Sy = 0.

(Y ITP 9, ST arises as the limit of the sequence {S*} with S = ES and
SMY o (S for X e N

(dY P 8, there is o 5 < nd with ${8*) = § = 87 for all X > &.

Froof,

{a} Let S7 be the schedule given by S = mingep Sy for all § € V oand

assumo ‘ihdt ’73 ;z’“ Eﬁ W’v ahow Lim %“{" is 111{' 111‘15(';119 minimal point

wa* )< mingep gj) S}‘ By defzmi,z;m of 1P, sot. P Cal be }(,pz osmt.cd as

------ = {8 e Rgf,"g Sy =90, § = (S} Now assnme that §7 ¢ P, Then
L’i:em i an activity 7 € V such that ,Sj < (57} < minger 9;(5) <
mingep 9 = ,5?' which contradicts the assnmption,

(b} Since §7 is componentwise winimal in set P = {§ ¢ RE? | S =
S 2 ¢(8)}, we have §7 = (8, e, S s a fixed point of ¢. Due to t.he
conpectivity of network N, a point S is a fixed point of o exactly if there
san a2 0with =87 +afi,..., 1) Thus, § = 57 is the nnigne fixed
point of ¢ with Sy = 0. Now assnme that P = @, Then there is no point
S ¢ REE? such that Sy = 0 and § = ¢{S). Since the set of fixed poiuts of

i equals {5 2 REE2 1S =St +afl,... 1) for some o = 6} and S =0,
the latter statement implies that ¢ does not possess any fixed point.
{¢} We first show by induction on A that §* < §% forall A € N. From P C Sy

it follows that §' = ES = (minses, 9 )hev S (minser Sljev = ST,
Now assnme that $* < S1, Shice operator o is isotonic, we have $M1! =
$(8*Y < @{ST) < 8%, where the last nequality resnlts from ST e P
For 81 = ES it holds that 81 = {maxg jyep(S! + &)} for all j € V.
This provides §7 = ¢{§') > S which proves the sequence {87} to be
componeniwise nondecreasig. iims3 the existence of an upper bonnd §7
implies the convergence of {S*}, Then limy.,o S = Biiyo,e S =
1im,\ s z,' S')‘} = tg’/(iim;\w.m S’\) and the Eimi! of {6’\} }{:pzmenbs e ﬁxed

Sy {} 5 Ium_.m 53 < b& O we obtam Iun,\ s 5{} = i bmce
8 S"g' is the nnigue fixed point 5 of 4 with Sy = 0, ST coincides with
the limit of sequence {5}
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(d} The assertion is immediate with the imonctonicity of {$*} and the prop-
erty that as long as 87 4 82 there & an activity A € V with
Sptt > 82+ 1 0

According to Propostiion 3.2, minimizing a regolay abjective function f

until either 8 = ¢{.8) or Sp49 > d. In the latter case, P lias been sliown to be
empty. The mynber of Herates needed for reaching minimal point $7 can be
decreased by the following modifications. First, we may start the procedure
some activity 7 has been increased due o a disinnotive precedence constraing,
we may immediately vestare the timefeasibility of schedule S by pntiing
Sh.
precisely i 85,51 < d, which ix easily seen by adding arc {0, 7} with weight
do; = & to project network IV and applying Algorithm 1.3 for updating dis-

be the carllest completion time of some activity ¢ € A, with respet to cor-
rent iterate 5 € &p and let dfi ‘= maXje g, dyn denote the “distance” between
set. B, and activity & € V. Then (he start time of activity & € V has to be
inereased precisely .5, <14, + dz, L this case, we set Sy o= £, + dﬁ_ and
update the carliest completion times $y for all sets Ay comlaining activity /.
Algoritlim 3.2 shows an buplementation of this method ax a label-correcting
procednre where quene ¢ containg all indices A = 1,. .., v for which time £,
has to be updated.

Algorithim 3.2, Minimizing regnlar objective finctions siubject to temporal and
disjunctive precedence canstraints

Input: A schedule 8 € Sy, distance nratrix D, relation sets P(A,, B,)
fa=1,... . vL

set 5w 8 and e {1, v}
foraliu=1l,.. . .vdo
3 by e amiiea, (S i)
4 forallhcVdo df: = makgen,, dinl
repeal
dequene index g from )
Fo for allh € V with S, < ¢, + d) do
: gob Sy e b, b d.jﬁ;
forall A=1,... v with h € Ay and { < mingga, (S +pg) do
13 sed 1y o= mityna, {5y + ool
i A ¢ Q then enguede A to (X

i @ = # then return 8, else return 5%
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Next we analyze the thie complexity of Algorithm 3.2 To this end, we
assume that sels Voand A, with p = 1., » are stored as FPibonacel heaps
{see, e.g., Kruitl 1998, Sect. 6.2) sorted respectively according to vondecreas-
ing start times 8; or nondecreasing completion times $; -+ p,. The mitialization
of earliest completion times 4, and distancey dh on lines 3 and 4 takes O{vn?)
tirne. Since the algorithm stops as soon as S'.,H,i > d, Hne § is exccuted at most
Ofnd) thnes. On the other hand, on line 10 cach point in time £y cannot be
increased more than Of{wd) times, which implies that the repeat-loop s iter-
ated O{minfn, v}}f) times. At each iteration, identifying activities £ € V with
Sp o<, + afﬁi on Hne 7 requires Ologn) time and rearranging the Fibopaccd
heaps Voand A, after having increased start thne 8y, o line 8 takes Gl logn)
tire. Thus, the time complexity of Algorithm 3.2 is O{vn? +minjn, vidv log n).

Ablernative selution procednres with pseudo-polynomial thne complexity
have been devised by Zwick and Paterson {1996}, Chauvel and Proth (1999},
and Schwicgelshohn and Thiele (1999). Mohring et al. (2004) provide a review
ou papers dealing with applcations of disinnctive precedence constraints that
arise in flelds outside project scheduling, such as aualyzing functional depen-
dencies among dala i relalional data bascs (Ausiello et al, 1983), opthuizing
the partial disassembly of produncts when removing single componoerts {Gold-
wasser and Motwani 1999}, or computing optimal strategles for mean-payoff
games on directed bipartite graphs (Zwick and Paterson 1996). In the latter
paper it is shown that the preoblem (o decide whether the outcorne of such
a game i positive is contained in NP O coNP. Iy addition, Mohring et al,
{2004) have shown that this decision problem is polynomially equivalent to
mindmizing a regular objective function subiect to digjunctive temporal con-
straints where p; I inequality (1,11} §s replaced with an arbitrary time lag 8,5,
Despite this observation, however, no algorithun s availlable thus far for solv-
ing the latter schednling probleny inn polynomial time. For Uic case where all
time lags d;; are nonnegative, Méhring et al. {2004} exhibit a label-setting
algorithun that runs in Of{n -+ {37 L 1B lim + Z;m: [ AL BL1) time.

FIEF

3.1.3 Branch-and-Bound

The epumeration scheme given by Algorithin 3.1 defines the branching
strategy of a branch-and-bound algoritling for problem {P) with regular ob-
jective fimetion . In tis subsection wo present the complete branchi-and-
botd procedure. Besldes the branching strategy, a branch-and-bonnd algo-
rithm for & minimization problem s characterized by the search strotegy for
sclecting one of the generated empmeration nodes for further branching, con-
sistency fests, which are applied to restrict the search spaces of cnmmeration
nodes, and lower bounds on the minimum objective function valne,

The search strategy of the branch-snd-bound algoritlnm is as follows.
We always branch from one of the child nodes v of the node v currently se-
lected, Le., we perform a depth-first scarch, The depth-first strategy can be
implemented by simply choosing the list @ of unexplored nodes u 10 be a
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stack. The main advantages of deptlr-first search are that frst, this strategy
ninkmizes the memory requirements necessary for storing list (¢ and that see-
ond, the number of branchings for reaching the first leaf w of the enumeration
tree {and thus often the time {or computing a first feasible solntion) is mini-
ran. Child nodes v are pushed onto stack @ according 1o noninereasing lower
bounds. Oue drawback of the depth-firgt search strategy is that typically, two
enurperation nodes visited conscentively belong to shnilar relation sets, which
share & large mmber of comumon elements, As a congeguence, it may take a
long thne before any schednle located in a given part of the feasible rogion is
investigated, and thus the algorithm may spend much time in nseless parts
of the enumeration tree. This shortcoming can he avoided by partitioning the
enumeration tree into a nmmber of sublrees, which are simultaneously tra-
versed according to a depth-first search strategy each {scotlered search, cf.
Kieln and Scholl 2060},

RBasically, each of the consistency tests discussed in Snbsections 1.2.4
and 1.3.4 can be applied at any empmneration node. Shice disjunctive prece-
dence constraints cannot be represented by s distance matrix ), the tests
using distances d;; between arbitrary nodes 4,7 € V {the dishmnective ac-
tivities, energy precedence, and balance tests) refer to a wmodified distance
matrix D' = {d];)i jev reflecting the temporal constraints 5; ~ S 2 dj;
thal are implied by the original temporal conslraints and t’ﬂc added c’zzﬁw
jnnetive precedence constraints. For example, the modified distance matrix
can be chosen 10 be egual to the clementwise minhmal matrix 17 with
d;;; = max{dgn, minieq, MaXjep, (d + o+ d;b)) for all g,/ € V and all
po== 1, v which satisfies the mfmgle ineqnalities (1.6}, For distances d,
we may chwose dy, = S, (b € V), where S is the minbmal point of search
space T computed by Algorithin 3.2.

The gquestion which consistency test should aclnally be nsed at which node
has Lo be investigated wilth care. The reason for this is that ntuilively there
iy & tradeofl between the efliciency {i.e., the computation time required) and
thie effectiveness {Le., the decresse in size of the searcl space) of 5 test, As
a rile, the deeper the emuneration node, the less time should be spent with
consisteney tests, In any case, the search space redoction algorithim {cf, Algo-
rithm 1.5} shonld be implemented in the fonn of a label-correcting procedure
iterating thie hypothetical temporal constraings whose validity may be affected
by the last constraint added {either an imposed disjunctive precedence con-
straiut or a temporal constraint arising from applying & consiglency test).
In branch-and-bound algorithms for the project duration probdem with re-
newable resonrce constraints, De Reyck and Hervoolen (19984} and Schwindt
{1998¢) have applied the disjunclive activities test to two-elemnent forbidden
sets {De Reyck and Herroelen used the test as a preprocessing technigne at
the root node). Dorndor! et al. {2000a} report on favorable vesults nsing the
workload-based disjunctive activities tost and the nuit-intorval capacity test
in a time-oriented branch-and-bomnd procedure for the same problem {the
latter algorithm is briefly sketched in Subsection 3.1.4). Dorndorf ot al. have
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also experimented with the activity iiterval and gencral interval consistency
tests, but on their testbed (projects with 100 or 500 activities) the additional
search space reduction bas been, on the average, ontweigired by the increase in
computation tiine. Finally, Laboric (2003} has been able to improve upon the
results obtained by Neumann and Schwinds (2002} for the project doration
probler with comulative resonrees by nsing the balance tost.

Next, we tnrn to lower bounds on the minimun objective function vahie,
Let § be the minimal point of search space P nnder study {possibly rediced by
applying consistency tests). Obviously, by = f{5) represents a lower bonnd
on the objective function value ming cpngs F{57) of a best feasible schednle
in P, Within a branch-and-bound algorithm for the project duration problem
with regewable resourees, Schwindt (1998a) has used two further lower bounds
Iy and by, respeciively being based on disjunctive activitics and energetic
reasoning. We first deal with lower bonnd by {sec also Klein and Scholl 1698).

the project duration. Clearly, the latest stayt thiwe LS == —dyg of activity 1 s,
under the asspmption of & project deadline &', less than or equal to d ~ d; 41,
and the earlicst completion time S; + p; of activily 1 s independent of d'. Now
let {i,7} be a forbidden set such that & — dj a0y < S+ p; and df — d; 4 <
8y -+ py. Then activities ¢ and § nmst overlap in time, whicl is impossible dne
o their excessive joint resonrce requirements. Corseqnently,  + 1 is a lower
bonnd on the shortest project diration of all sclicdnlos in the search space.
Moreover, ¢ nust be fncreased by min{S; + pi + djaet, 85 + 05 + dinss)
mudts of time to avold the above contradiction. Thus, nstead of performing
a binary scarch in set [Saqy,di 0 Z, we may directly compute the smallest
deadline ¢ == by, which cannot be disproved as

iy = max{S, ¢{?1%§txflniﬁ(3-z ot dias, S by b s g b
s : . :

For given two-elemnent {orbidden sets {7, 7}, calenlating smalest deadline o
requires O{n?) time. By applying the profile test from Subsection 1.3.4 to the
projoeet termination event n-+ 1, Neumann and Schwindt {2002) have obtained
a supilar lower bound on the minimum project duration of projects with
ennmlative resourees. The algorithm iterates hypothetical upper bonnds &,
whiel may be refuted hased on lower and upper approximations to the loading
profiles,

Now reeall the concept of lower bonnd wi{a, b} on the workload to be
processed on repewsble resonrce b € RE i indorval la, B (see equations {1.13)
and {1.14)). By replacing the carliest completion time EC; = ES; 4+ p; in
{1.13} with 5; + p;, we obtain a corresponding lower bound referring to the
search space P rather than to set Sp. In particnlar, wi(Si, d) represents a
lower bound on the workload for resource & that st be processed afler the
carliest start time Sy of activity i, which takes at least [wy(S;, d)/R:] units
of time. By taking the maximmm with respect to all real activities ¢ € V* and
all renewable resonrces & € RP, we obtaly lower bonnd
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bz = max(S; + max [ H* 1)

on the mimimmm project duration. Cowpnting valne b can be done in
QR nlogn) time.

We briefly tonch npon further, more timoe-cxpensive lower bounds on the
miniman doration of projects with renewable resources, wiich can be found in
Hetlmann and Sehwindt {1897), Brucker and Knnst {2003}, and Mohring et al.
{2003) and wil be used for the performance analysis of exact and henristic
niethods for the project duration problem in Snbsection 3.1.4. The latter two
lower bonnds are also described I more detall in Nemnann et al. {20038,
Subsect. 2.5.8.

Heilmann and Schwindt {(1897) discuss several lower bounds based on
disjunctive activities, energetic reasoning, and a relaxation of the resonrce-
constrained project schoedufing problem (1.8} leading 10 a precmptive one-
machine problem with release dates dg" and guarantine times ¢ fi{?’;} (i e Vo)

Stmilarly to lower bouud by, the Jower bound on the minhmun preject
dunration devised by Bricker and Konst (2003) i based on falsifying hypo-
thetical project deadlines /. For a given value of &, the procedure of testing
the consistency of deadline d constructs a lnear program and tries to show
that i is nnsolvable, At first, several consistency tests are applied it order
to tighten the time windows {S;, LS;] of individual activities ¢ € V¢ {recall
that minimal polint § coineides with the earliest schedule bu set P). For each
pair (1,17 of consecutive earliest start or latest complotion times of activi-
ties ¢ € V', the set of all tentative active sets A for interval [1, [ is then
compnted, where §; < ' and LC; > ¢ for all § € A snd dyy < p; for all
1.7 € A For eacl set A4, a continnous decision variable g4 > 8 i‘; frdrodueed
providing the tiwe during which A is in progress in interval i, ¢'] (Le., during
whieh procisely the activities 1 € A {}V{;riap inn time}. The proj u‘.t. duration
is then minimized subject to the constraints that first, each real activity ¢ is
carried out for p; nuits of tme In the different sets A and second, the total
execntion time of all sets A belonging to some pabr {£,1) Is less than or equal
to iterval length ¢ — £ The latter problemn can be formulated as a linear
program in decision variables y4 and corresponds to the relaxation of prob-
lem {1.8) where the temporal constraints are replaced with the weaker release
dates dij™ = 5, and deadlines dii®® = LS;. Morcover, activitics arc allowed
Lo be mt.ezm}.){.ed diring their execntion. Since the nnmber of tentative active
sets A grows exponentially in n, i s expedient to solve the linear prograsm by
cofumn-generation fechniques (see, e.g., Goldfarb and Todd 1989, Sect. 2.6}
The basic iden i3 to consider only a restricted working set of decision vari-
ables that are generated when needed. Each time the linear program with the
current working set of decision variables has been solved o optimality, new
deeigion variables are added Lo the working set or it is shown that the o
rent hasic solinton is opthmal. For finding an boproving deeision variable 44
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ta be added to the working set, Brucker and Konst nse a branch-and-baumnd
algarithm enumerating hinary incidence vectors for sets A,

Mahring et al. {(2003) nse a fornndatian of prablem (1.8} as a binary jinear
program with tinme-indexed binary variables @y, whieh lias been propased by
Pritsker et al. {1969} for the first time. Deoisian variable i equals one if ac-
tivity ¢ is started at thme { and zera, atherwise. Yor (appraximatively) solving
the cantinuans relaxation of the latter binary program, Mshring of al. apply a
standard suhgradient methad {cf. Held et al. 1974} te & Lagrangean relaxation
of the latter linear program, which substitutes the resource constraints inta a
Huear penalty function. Far given multinliers, the Lagrangean relaxation can
he salved efficiently by transforming the problom into a niininusn-cut prablem
in a eyelic network with npper arc capacities, where each nade stands for one
deelsion variable zy, (the time complexity of this appraach is studied in more
detail i Mohring ot al. 2001). The main advantage of this approach is that
it can be 1ged for eacl oblective function f which can be written in the fom
Z;‘ev wpdy, Where wy € 2 and variables 2y, are used in the above meaning.
In oddition, the approacly can straightforwardly be generalived to the case of
emmulative resonrees (see Selle 1999),

3.31.4 Additional Notes and References

Algarithim 3.1 combines the ennmeration schemes of the hranch-and-hound
algorithms by Schiwinde {19984} and Newmann and Schwindt {2002} for the
mroject duration problems with renewahle-resanrce and comulative-resonrce
constraints, respectively (see alsa Schwindt 1998}, I this subsection we briefly
present alternalive solntion procedures that have been proposed i literatire
and present the resnlts of an experbpental performance analysis of the algo-
rithms, We ondy consider algorithms coping with general temporal constraints.
For the special eage where instead of minimum and maxivum time lags be-
tweon activitios precedence canstraints are prescribed, we refer 1o the survey
papers by Herroelen et al. {1998}, Brucker et o1, {1999), Hartmann and Kolisch
(2008), and Kelisch and Padmay {2001} and the llerature cited thorein.

We first deal with exact procedures far the project duration problem
with renewable resources. By using ordinary precedence constraints in-
stead of disjunctive precedence canstraings for breaking up forbidden active
sots, we olitain the emumneration scheme of o branch-and-bound algerithin that
has been devised hy De Reyek and Herroelen (19884}, Accordingly, the enu-
meration nodes correspond to time-feasible relations p which arise frony the
ardon of mingmal delaying modes {1} x B. This ermmeration scheme will be
discussed in mare detall in Subsectian 3.2.1.

The earliest branch-and-hound algarithm for the praject duration problem
s due to Bartuselr et al. {1988). Thelr approsch differs from the algorithm
hy De Reyck and Herroclen inn the furhidden sets considered in the course of
the algarithm. The forbidden sets F hroken up in the latter algarithm {and,
hikewise, in Algorithim 3.1) are always aclive sets A4{(5, 1) belanging to the
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minimal point § of the search space Sp(p). If there is no forbidden active
set A{S,t) for § at any time £ > 0, schedule § is feasible, and no further
pairs {4, ) are added fo p. As we have already noticed in Subseetion 3.1.1,
the feasibility of 8§ does not necessarily bnply the feasibility of relation p.
The algorithun of Bartusch et al fist computes all minhmal forbidden sets
F & F for which the temporal constraints allow the sinmltaneons processing
of all activities 1 € F. Similarly to the ennmeration scheme of the algorithin
by De Revek and Herroelen, emuneration nodes correspond to relations p
i oset V2, The child nodes o, however, now arise from branching, for given
minimal forbidden set F'| over all pairs {4, 5} of activities ¢, § € F such that
relation o == plB{{¢, 7)1} breaks up . Leaves of the enumeration tree are either
feasihle relations p or relations p for which no {urther minimal forbidden set
can be broken np by any time-feasible relation p' 7 o
By substitnting the disjunctive precodence constraints (3.1} into releage
dates
dgy™ = i-‘éiii{-sf- + ) (e B) (3.2)

where the right-hand side ig the smalest completion thine of some activity
i & A with respect to the schedule § nnder cousideration, one obtaing the
emmneration scheme of the branch-and-bound algorithm by Fest et al. {(1999).
The main advantage of this approach is that given distance matrix I, min-
imizers & of the project duration on the searel space can be calenlated in
O(1Bn) time. Purthermeore, there exists a very simple and effective dowml-
nance criterion, which enables fathoming nodes by comparing corresponding
release date vectors. The drawback of the relesse-date based enmneration
scheme i that constraints {3.2) ouly temporarily establish a precedence ro-
lationship belween sets 4 and B. Sinece in contrast to the case of dishunctive
pre{;edence consi‘miut*s the rig_,i'zt—l'za.nd side of (.3 2} s a (‘omtzmt the resonree

one an{% t.he SHINE TESOIGe wuﬁigt may be res:oived repeat.eéiy aioug a pr;,i.i’z
from the veol Lo some leaf of the enurseration tree. Computational experience,
Lowever, Indicates that this situation can often be avoided by discarding enu-
nieration podes which due to unnecessary idle times cannot lead to quasiactive
schedules {(total-idle-time dominance rude, of. Fest et al. 1899).

All algorithms mentioned thus fay are based on breaking up forbidden sets,
The constrabd propagation algorithin by Dorndorf et al. {2000¢) brauches over
the binary decision whether to schedule a given activity £ € V* at its fenrrent )
earliest possible start time FS; or delaying 1 by roducing s release date
dg}_i” > £8; -+ 1. The large size of the correspouding comnplete enumeration
tree is significantly redneed by applying the dishunctive activities and nnit-
inberval capacity consistency tests and exploiting specific properties of active
sehedules.

We proceed with heuristic procedures for the project duration problem
with renewable resources. Franck (1998), Ch. 4, has proposed the following
priovity-rule methed. Preluninary variauts of this alporithin have been de-
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vised hy Newnann and Zhay {1995} and Brinkiany and Neumany (19963, A
streamniined versian af Franck's algorithm is deseribed hu Frauck et al. {20015).
At fivst, a prepracessing step is perfarmed by applying the digjunctive activ-
Hies cansistency test ta two-cloment farhidden sets. Ta canstruct a feasible
schedule, a serial schedule-generation scheme is used {of. Kalisch 1996), which
in each iteratian schedules one eligihle activity 7 € V* Ly fixing its start
time 5y, An activity 7 is called eligible if all of its predecessors @ € Pred™(7)
with respect Lo strict arder < i set V' have been scheduled, where ¢ < 7 1 (1)
dip > Dar (2) diy = 0 and dyy < O From the set of cligible activities, the activ-
ity ta e schednled next is chiasen according to a priority rule. Let € denote the
set af all activities abready scheduled. The activity 7 selected is started at the

resource requirenents by § and the activities § @ C da nat exceed the resaoree
capacities, Due to the presence of waxhuum thne fags, it may happen that far
a selected activity j there is no such poit i time 2. Let ¢ 1= mingeo {8 —dyi)
then denote the latest start time af 7 due ta the {induced) maxivm time lags
between schoduled activities 1 € C and activity . Ta resolve the deadlack, an
unscheduling step is performed, which cancels the start fimes af all schedaled
activities ¢ € ¢ with S > ' and inereases the carliest start thne ES; aof all
scheduled activities 7 ¢ C with 5 = & hy one unit of tine. The pracedure
s terminaled if a prescribed maxinoon nomber of mnscheduling steps have
fieen performed ar if all aclivities § ¢ V* have heen scheduled. The mimber
af required nnscheduling steps can he markedly decreased an the average if
activities af strang camponents in praject netwark N are scheduled divectly
one after anather, where N daes not cantain backward are {(n -+ 1,0} (recall
that when minimizing the praject duration, we may delete the deadline d on
the praject termination).

Based on this priorily-rule method, Franck {1999), Ch. 4, has alsa devel
oped a schedule-impravement procedure af type parallel genetic algorithm (seo
alsa Frauck et al. 20018), which s an adaptation of a genetic algoritlm by
Hartmann (1998) for the praject duration prohlem withont maxinmm time
lags. The genetic algorithin works on several subpopulations of equal size,
where cach island evolves separately nntil after a given nunther of erations,
same individuaals migrate fram one subpopnlation to anather one. The hdi-
vidnals are ropresented by {easitde activity Hsts (fe., complete strict orders <
inn set V* extending strict order <), which are transformed into schednles by
applying the serial schedule-generatian schemne with stricl order < substituted
into <. The initisl subpapulstions are created by randomly biasing priority
rites and trensfarming the resulting priarity values #{7) af activities ¢ in an
activity Hel < hy putting ¢ < § i (1} 4 < § ar {2} 7 4 7 and w(?) < #w{j). At
cach Weration, two individuals are selected far crassaver 1 each snlipapulation
aceording to a double roulette-wheel selection. By anplying a one-point and a
twa-point crassover operatian to those twa Individuals twa new activity lsts
are generated. With a certain probability, the new activity listys are then snb-
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jected Lo mwtation by bnterchanging the positians of two adjacent activities in
the list. Subseqguently, the two activity lists arc decoded into schedules using
the serial schedule-gencration scheme, If in the course of the schednle gon-
gratian a maximmm number of unscheduling steps has heen performed, the
viakation of maxbmng thoe lags is allowed, which means that the resulting
schedide s nat thue-feasible. Based an the resulting schedules, the fitness of
the activity Bists ig caleulated as the s of the project davation and a penalty
term for thne-infeasibility of the schedule. Eventually, the worst two individn-
als in the subpapulatian are replaced with the twa new activity lists, provided
that the new activity lists have a better fitness. These steps are iterated untjl
ape of five stap criteria is wmet: all individuals have Lthe same fisness, a lawer
bound an the shortest prajec! duration has heen attained, a prescrilied -
ber af schednles have been evaluated, a feasible schednle has wot been Jonud
within a given munber of leratians, ar the best feasible schodule fonnd has
nat been aproved within a given mnnber of Herations.

A variant of the emimeration schome of De Reyck and Herroclen {19984)
has been nsed by Cesta eb al. {2002} for a mulfi-pass hewristic, where relation
{2} x B is replaced with a pair {4, §) such that the additian of {1, §) ta relatian p
hreaks np some selected minbmal forhidden set F. Set Fis chasen from a
given yunber of sampled minimal forhidden sets ¥ ¢ F with FY C A{5,4)
for some ¢ > 8. F s one of the sampled minbnal forhidden sots with minimam
“temporal fexibility” in tenns of total slack times TFy, with A € F, and
pair (4, 7) 18 chosen such that the resulting tomporal flexibility for set F is
maximum, The addition of pairs {¢,7) to p is repeated until Sp{p} = § ar
minimal point S = min Sr{p} is a feasible schednle. Within the multi-pass
procedure, the temporal Hexibility nsed far sclecting paivs (4, 7} is randomnly
hiased, and this i general seversl different feasible schedoles are generated.

We now turn to the resnlis of an experimental perfarmance analysis. Al
af the abave algaritlins for the project duration prablem with renewable re-
sanrees except the branclrand-bound algoritiun af Bartusch ot al. (1988} have
been tested au a test set cansdsting af 1080 problen instances with 100 real
activitics and 5 renewahle resaurces each. The instanees have been generated
randainly by using the project generator ProGen/max {see¢ Schwindi 199845
and Kolisch et al. 1999}, The coustrnction of prajects can be inflnenced hy
means af cantral parameters {or the preblemn size, shape of the project noet-
work, activify durations, time lags, and resonrce eonstraints, From the 1080
instances, 10689 possess a feasible solutian. For 784 instances, an aptimal so-
hrtian is knawn.

Tahle 3.1 shows, I histovical order, the results obtained by the differ-
ent pracedures, where the campatation thues refer ta a Penthmn personal
campiter with 200 MHz clock pulse {(ta accaunt for different hardware, we
have linesrly scaled ihe computation thimes for De Reyck and Herraelen's
and Franck’s algorithms according to the carvesponding clack pulse ratia).
The resnlts for the branch-and-hound procedure of De Reyck and Herrae-
jern {19984} are given as quated by Darndorf et al. (2000¢). “Schwindt {19984}
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Fabie 3.1. Performance of algorithms for the project duration problem with renew-
able resources

}g01'it-l'iifi Logn Paget Pevs Froept Prunk A
De Reyck and Herroelen {19984) 3a BAB% 14% 425% 1% BB
30s B64% 14% 410% 1.1% 1t .
Schwinds {19984) BB s BROY 18% 401% 00%  TE%
30s 825% 1.9% 356% 0.0% TO%
00s 63.4% 1.8% 7% 0.0% 69%

Schwindt {1988q) FBS 28.1s BB4AY% 1L9% 3BT% 0.0% 64%
Fast et al. .{11999} ds B8.E% 19% 3419 3.9% 108%

305 68.4% 18% 287 00%  TT%
s TLIW% 1.9% 27.0% 0% 7.0%

Franck (1999) PR 0.16s B72% 18% 409% 00%  TA%
Franck (1999} GA 12.1s GRI%% 1.9% 3RO0% 00% 5H3%
Porndorf et al {20000) 3s 66.2% 198% 316% 03% 52%

30s T04% 18% 2TT% 00%  4.8%
00s 7L7% 19% 264% 0.0%  46%

Cesta et al. (2002) 1W00s 63.2% 1.9% 34.8% 00% T3%

BB and “Schwindt (1998a) FBS” designate the branch-and-bound algorithm
of Schwindt (19984) and its truncation to a filtered bemn search heuristic (see
Franck et al. 20018, “Franck {1999) PR” and “Franck (1998) GA” sband for
the priority-rule wethod and genetic algorithm by Franck {1989}, The priority-
ride method is performed with 14 different priority rules and the begt schednle
is retirmed. For the branch-and-bonnd procedures, e, denotes an imposed
time Hmit after which the enumeration is stopped. For the heuristics, £, is
the mean computation Hme. Pop, Ping, Propts A0 Duns denote the percentages
of instances for which respectively an optimal schedule s fonnd and optimality
is proven, insohvability is shown, a feasible schedule Is fonnd whose optimality
eanprot be shown, or the solvability statns remains unknowr. In addition, we
provide the mean percentage deviation Ay, of the project duration found from
a lower bomrd I on the minliman project doration, which has been calenlated
nsing technignes described in Hetlmann and Schwihxdt (1897}, the lower hound
of Mohring el al. {2003) based on Lagrangean relaxation, and the lower hoimd
of Brucker and Knust {2003) nsing colimn generation {sce Snbsection 3.1.3).
For the algovithm of De Reyck and Herroclen (18984}, the published mean
deviations from lower bound are based on valures different from b and are
thus not listed. The mean refers to the mmstances wiiel have heen solved to
feasibility by the respective algorithm. For the heuristic methods, we say that
optimality is proven if the project duration obtained equals lower bound
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and insolvability is shown If the cousistency tests inelnded reduce the search
sprce ta vaid,

Asg far as the exact algarithms are concerned, the results suggest that
the most recent of the branclh-and-bonnd precedures {(Deorndarf et al. 2000¢)
i also the algoritinn which performs best with respect to all five evaluation
criteria. The goad performance of the constraint prapagation algorithg is pri-
mrarily due ta a clever search strategy and the effectiveness of thie cousistency
tosts, which are applied at every emuneration node. In particular, the mean
deviatian Ay fram Jower hound is significantly simmaller than for all remalning
algoritlims and far almost three guarters of the instances, the enmmeration
iz completed within a time Hmit of 100 seconds, It 38 warth mentioning that
all algarithms compared, execept De Reyek and Herroelen’s branch-and-hound
procedure, are able ta identify all insalvahle imstances and te find a feasible
schedule for cach salvable instance. The comparison of the results obtained
when varying the thme Hmit of the branch-and-baund procednres, hawever,
indicates that solving all of the remaining apen instapces wanld probably
require » prahibitively large compntation time.

The prierity-rile methad provides feasible schedules with an aceeptable
deviation fram lower baund within a very shert amoeumt of time. If more
compnbation time is availahle, the genetic algorithin may be nsed to hnprove
the initial schednle calenlated by the priority-rile method. Fhe camparisan
with Darncdarf ef al.’s algoritlun stopped after three secands, however, shows
that the latter algorithm also entperforms the henristics. In addition, the
data far the filtered heam search version of the branch-and-boind procednre
of Schwindt (1998a) suggest that even better resnlts may be oblained by a
trencated version of Boarndarf et al’s algoritlnn.

We praceed with the project duration problem with cunnnilative re-
sources. Ta the hest of owr knowledge, there are only twa algorithms for
salving thig prablem the hranch-and-honud procedure devised by Nemmanm
and Schwindt (2002), which is hased on the enmumeration scheme given hy
Algorithirn 3.1, and a Dranch-and-hannd algorithng that has been proposed by
Laborie (2003).

The emunneration seheme of the lalter procedure picks twa distinet ovents
i, with diy; < € and dj; < G in each iteration and branches over the binary
decision whether or not ¢ oeenrs before j {le, 5, < 5; —1or §; > 8,). The
selection af ovents 4, 7 is hased on {le vpper and lower bounds “r"“}s {h), -“ff(h),
v {h), 3:;3 (R} on the inventory levels in resanrces k € R just befare and at
the acourrence, respectively, of events b € V' {sce Subsection 1.3.4). At each
node of the enmmeration tree, the balance test iy nsed to reduce the thme
windows [ESy,, LS,] of events h ¢ V.

Table 3.2 shows the results of an experimental performance analysis of
Nemwmnann and Schwindt’s and Labarie’s algarithms. The test set has again
boen generated by ProGen/max and contains 380 nstances with 10, 24, 10,
ar 100 events and 5 cumulative resanrees each. The computations have heen
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performed on a Penthun personal computer with 200 MHz clock pulse. For
cach instance we have imposed a time Imit of 100 seconds, The moean devia-
tion from lower bonnd Ap s based an the lower bound by that is obtained
by applying the profile test to the project termination evert n 4 1 {see Sub-
section 3.1.3).

Tablie 8.2, Performance of algorithms for the project duration problem with cumu-
EE!.{E%VG PesCRirces

Adgorithm 7 Bopt Ping  Prmopt  Punk b
Newmann snd Schwinds {2002} 10 86.7% 33.3% 0.0% 00% 04%
20 48.8% AL 0.0% 0.0% 22%

S3O510% 456% 11% 22% 13%

100 B5.6% 344% TRY 220% 12%

Laborie {2003) B0 53.3% 467% 0.0% 6.0% 15%
100 834% 366% 00% 0.0% 09%

We Hist disenss the results obtained with the algorithm by Newmann and
Sclrwindt {2002). For al] 180 ingtances with 10 and 20 events, the ennmeration
is completed within the thne lbinit. Bven for the projects with 100 events, 90%
of the instances can be either solved to optimality oy proved to be isolvable.
Put inta perspective with the data displayed in Table 3.1, thase results may in-
dicate that problems with cimnulative-resource constraints are more tractable
than problans with renewahile resources. As far as the computation of feasible
schedules 8 concerned, the picture is different. There exist projects with B0
events for which after 100 seconds neither a feasible schedule can be found nor
insolvability can be shown, With the branch-and-bound algorithin by Laborie
{2003}, however, the twelve open instances with 50 or 100 activities can be
solved within less than 100 scconds (56 seconds on a HP 8080/785 worksta-
tion}, which again confirms the benefit of efficient and effective consistency
tests, The reslts for the projects with 18 or 20 activities are the samoe ag {or
the algorithm by Neumann and Schwindt (2002).

3.2 Convexifiable Objective Functions

For convexifiable objective fumctions, time-constrained project scheduling with
disjunctive precedence constraints can no longer be performed efficiently, and
thus resource conflets are settled by introducing ordinary precedence con-
straipis, After the treatizent of an eunmoerabion schome for gencrating can-
didate schedules, we discuss two alternative approaches to solving the relax-
ationg: the primal approach, which will be nged to sobve the time-constrained
project scheduling problem at the root node of the cnmeration tree, and
tlie dual approach for adding precedence constraints between activities of the
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project. Wheress tle primal steepest descenl algarithm iterates over time-
foasible schedules, the dual faltest ascent algorithm conseentively enfarces
the precedence constraints., Both algorithims are nsed within a branch-and-
hormnd algorith far minimizing convexifiable oltiective funetians, In addibion,
we pravide an overview of alternative solutian pracednres {hat have beenr de-
viged i literature for specific convexifiable abjective functians and disenss the
resnits of anr experiimental yperformance analysis of the methads treated,

3.2.1 Enumeration Scheme

Procursars af the ennmeration scheme to be discnssed in this snbsectian
have hreen prorrosed, independently, by Ivmeli and Frengiic {1896} for the
el present valne prablem with renewable resaurees and by De Reyck and
Herraelen {1998a) for the praject duration problem with renewalle resaurces.
Ternell and BErenglic (1996) have considered the case of precedence constraints
among activities instead of general temgraral constraints. The enmmeration
sclierme has arisen from the comlination of the relaxation-based appraach by
Bell and Park {1990} and the concept of minimal delaying alterpatives intro-
dneed by Demenlemeester and Herraclen (1892}, Later an, Schwindt {2000¢)
has used the emmuperation scheme within a ranch-and-bound alparithm for
the tatal ecarliness-tardiness cast pratifem with renewalle resaurces. For solv-
ing the capital-rationed net present valie prablem, Schwindt {2000a) las ex-
panded the emmucratian schamne to cape with cummlative resaurces.

The algarithin mainly differs from the enumeratian schemne considered in
Subsectian 3.1.1 in that forbidden active sets are broken np by ordinary in-
stead af digjunetive precedence copstraints, Henee, each enumeration node
is associated willl a relation p rather than with a set P of relations, and the
search spaces P represent relation palytopes Sr(p}. The relations p arise from
the piien of minimal delaying mades {4] x B, where B is o minimal delaying
alternative for some forbidden set Fland ¢ ¢ A with A < V\ B being an appro-
priate set of activities ta he chosen depending on the type of the underlying
resauree conflict. Accordingly, we obtain one enmperation nade far each cam-
Wination af activity 1 € A and minimal delaying alternative 5. The relaxation
t0 be salved at an emumeratian node hrelonging ta relation p cansists in finding
a {lacal) mintmizer of alijective functian f on search space Sr{p}. In contrast
ta the case of regular objective functions, it can easily be verified whether
or nat the search space becames void whern passing from p ta a child node’s
relation g’ = pU{{i} x B} by checking the condition d‘f% 4+ < Qforeach je B
{see Propasition 1.9}, Updating the distance matrix D{p] after the addition of
pairs {4, 4) with § € B can be achieved in ({n?) time by using Algorithm 1.3
and ahserving that maxjep{dy + 0, -+ din) = dgi -+ py -+ max;ep dyy for all
wmhelV.

The ennmeralian scheme is now as follows (¢f. Algorithm 3.3}, @ is a st
of relatians in sel V' and € again denotes the set of candidate schedyles ta be
generated. At first, we pot the empty relation p = @ on list @ and set £ :=§.
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We then check whether there is a eyele of positive length in project nebwork N,
in which case we return the empty set of candidate schednles. AL each teration
we take some relation p from lst Q and detennine o minimizer S of f on
relation polytope Splp). If schedule S I8 resource-feasible, we bave found a
candidate sehednle, which s added to set €. Otherwise, we scan S for o start
time £ = 5 of some activity £ € V osuch that active set A(S £) ucludes a
forbidden set F and cownpute the corresponding set B of all wminimal delaying
alternatives. For each minimal delaying alternalive B € B and each activity {
from the respective set. A we obtain one minbmal delaying mode §} x B,
which is joined with relation g and gives rise to the extension ¢ of p If
velation polytope Sr{p} Is nonempty, ¢ is added to the list @@ of unexplored
emnnneration nodes. We then take the next relation p from list £ and proceed
in the sane way until oo more relations p remain in Het € and the set C of
all candidate schednles & retumed.

Algorithm 3.3. Buumeration scheme {or convexifishle objective Dmotions

Input: A project, convexifiable objective function f.
Outpuis Set C of candidste schedules

initialize list of relations @ == {@} and set of candidate schedules € ==
if Sy = @ then return €, (= cycle of positive length in N )
repeat;
delete sowe refation p from list &
determine minimizer S of £ on Sy{p);
# 9 is resonree-feasible then £ := U {8} (» candidate schedule fonnd =)
else {x introduce ordinary precedence constraints +)
determmine titze ¢ such that resource coustraints {1.7) or (1.20} are violated
for some b ¢ RYURY;
if L e W then
set Fowm A{S )MV
compute set B of all winhual delayiug alternatives for F;
alse
seb Foom A{S 1INV
comapiite set B of all ininimeal delaying alternatives for Fand &
fur ail B¢ Bdo
if k¢ R then set A = FA\ B elsif B ¢ 1’1."'%' then set A = V& \ F
else set A v;"' \F
for slli ¢ A de

return {;
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3.2.2 Solving the Helaxations: The Primal Approach

The relaxation te be salved at each node of the emmneration trec genorated hy
Algarithm 3.3 corresponds te a time-oriented scheduling problem of type (1.2)
where Sy is substituted into some relation polytope Sp{p) and f is a convex-
iffable ohjective fimction. Ta simplify writing, we consider the relaxation ab

Recall that if objective funetion f: Sy -+ R is canvexifiahle, there exisls a
Cl-diffeamorphism o 1 Sy -+ X such that composite function ¢ 1 X — B with
Pl{a) = (f o Ha) far all 7 € X is canvex and the hinage X = o{Sr) of Sy
nuder ¢ is a convex get. The contimsity of ¢ aud the compactness of Sy hnply
that the domain X of ¢ is campact as well. If for given convexifialile alijective
fimction [, a diffecinorphism o satisfying the conditions of Definition 2.2% is
knawn, the relaxation can be solved by computing aminbnizer z of o an X and
retivaing schedule § == ¢ {z). The existence of such a minhmizer  is easily
soen as follows, By definition of +, the lower-lavel set L;{j of o for givena & R
equals the hnage of lower-level set L1 of £ under o, which Is closed becanse
of the lawer semicominuity of f. Canseguontly, the conthmity of o provides
the clasedness af any lower-level set LY of o, which means that ¢ is lower
sorpicontinuans as well. Since X s compact, ¥ always assuimes its mininnun
an X A minimizer » of ¥ on X can be detormined by the ellipsoid methad,
wlhase tine conmlexity is polynomial in the lnput length of function 4 and
seb A . We stress, however, that the latter lhne complexity is not necessarily
polynamial in the input length of the original relaxation {1.2).

Far twa special cases, which caver mast canvexifiable alijective functions
aceurring in practice, the relaxation can he solved more efficiently on the
average. We first cansider the case where f is piecewise affine, convex, and
sun-separable in the nodes ¢ € Voand the ares {4, §) € F of praject network N,
te., [ ean he written i the form

N8y =3 f{Sa+ 3 falS~5)
im Y {i,j1¢E
where functions f; @ [ES,LS] — R (i € V) and fy : [diy, ~dp] —~ R
({#,7} & E} are piecewise affine and canvex. The problem of minimizing a
surn-separable fanction on seb Sp is knawn ag the opfimal-potenticl problem
in literature {cf. e.g., Rockafellar 1998, Sect. 17). It s well-knawn that the
oplimal-patential prablom with piecewise affine and convex functians f; and
Fiy is dual to the conver-cost flow problem

Minimize Z f;‘j,-(m;j)%—z.ff( Z Wi — Z ij )

{#,3}C K gy {f.ipEE {16k
subtiect to ¢ < z Uy z up 6 (e Vi)
{4y dd SN TN

where the functions f; and f7 and the functions fiy and [ are conjugate to
each ather {see Rockafellar 1888, Sect. 8G). Recall that a function ¢* with
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effective domain X* {l.e., ¢*(y) < oo for all ¥ € X*) Is conjugate to a function
¢ X — R ¢*{y) = supex (v’ o~ ¢(x)) for all y € X*. For given functions
Ji aud fi;, the corresponding conjugate functions f and f7; are piecewise
affin{-‘ as well. The functions f * and f""‘ (}zp T m‘i(fiti\fe (‘01}‘;1';1;}&) emd the

T

by reversing i.he roles of 3)}041{;_)0}:115 aml sio }os i passing fmm fzm(‘i lons ﬁ
and fi; to thelr respective conjugates 7 and 5 The additive coustants arise
from evaluating a convenient point on the Emlexc‘tvnst}( curves of f; and fiy
{see Rockafellar 1998, Example 3 in Sect. 8F). The characteristic curve I of
a couvex fanction of one variable is the set of all points (&, 4) € R? such that
y 15 hebween the lefi-hand and the right-hand derivative of the furmtion at x.
The couvex-cost flow problem can be solved in O(mn?log[3, o (1G] + e,
time by a generalization of the capacity-scaling algorithin for the inin-cost
flow problemn {see Ahuja et al. 1983, Sect. 14.5).

The subease where fi{8;) = w8, for all 4 € V oand fi;(S; — 55} = 0 for all
{1,7) € E leads to the following win-cost Sow problew {cf. e.g., Bussell 1670):

Minhmize E ------ LAy

ek
. St g, i i 0 .
snbiect to Z Uyg ™ Z tyy = {7 . (ieV)
= rorl —;, otherwisc
{ii)ek (FHE8

wy 2 0 ((4,7) € )

We now turn to the second special case, where convexifiable objective
function f is asswned o be couthmonsly differentiable or sum-separable in
the nodes £ € V oof V. I that case, the relaxation s simenable to an cfficient
primal sleepest descent approach, wiich has been used by Schwindt (2000¢)
for solving the thue-constrained total ecarliness-tardiness cost problem and
by Schwindt and Zhomernpann {(2001) for solving the time-constrained net
present value problem. We first review sorpe basic concepts requived for what
follows. For notational convenience, we asswne that function f possesses a
cortinuation f from an open set C ¢ RB*2 to R which is differentiable at
the boundary points of Sy, The dircetional derivative of f at point § € Sy in
direction z € B*? is defined to be

F(§+Az) — £(8)
A

aflsiz) = birn (3.3)

if the Hinit exists. Now recall that function ¥ = fo ™! is convex and thns is
directionally differentiable in any direction at any interior polut of its domain
{cf. Shor 1998, Sect. 1.2}, Since f = ¥ o s a composition of a C'-fhaetion
and a finite convex function, f is divectionally differentiable in any direction
at any interior pohit of its domain as well, The latter property hnplies that
Ei‘zv fimit in (‘3 ‘3} di\va,ys é‘x%%t‘s TE'}O d(*rim{ivo dﬁg( } m di:‘ec ti(m of t‘ e i-th
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fat 8, and the left-hand Si-derivative 8~ F/85,(8) of f at 8 equals —df|s(z)
where 2z = —e;. The vectors of right-hand and left-hand S;-derivatives of f
at & are denoted by VT/(S) and V-F(8), respectively. For fixed schedule S,
derivative df|s(z) is a positively homogeneons fimction g of z {ie, glaz) =
ag{z) for all o > 0 and all = € R*F?). Under our assmnption that objective
function f is continuonsly differentiable or snurseparable in i € V| derivative

g{z) = df|s{z) at point § in direction z takes the form
S L af
glz)= ) So Sz + E o {8z
) a5; £ a5,
i Vgl i Vin <)
In particndar, if f is continmnously differentiable, then ¢(z) = V{9 2,

where VF{8) is the derivative of f at S As we will see later on (see
Lemma 3.4), 0YF/0S(8) = §7F/85,(8S) for all § € V_ which inuplies that
glz) = 5oy max{FFf/88,(8)2, 871 /08:(S)z). Consequently, g is a convex
and thus sublinear function,

A direction z € B2 is called & descent divection at § € Sy i df|g(2) < 6.
z s termed a feasible direction at § if for some ¢ > (0, &+ 8z ¢ Sy for all
§ < & < 2. Due to the convexity of Sy, the latter condition is equivalent to
the existence of some £ > 0 with 8 + g2 ¢ Sy, Now let for given schednle
Se&p, B8y ={{i,jleE{S5 -5 _é%?} denote the set of ares {4, /) € K
for wlich temporal consty dmt 6 — & 2 & is active at § Then direction z
is feasible at S precisely if 2o = O and z; — 2z = 0 for all {4,4) € #(S). A
(normalized first-order) steepest feasible descent direction at S is » feasible
descent direction z at S with 2| < 1 minfmizing derivative g{z) = df|s{2),
where § - || is s RmE2,

Now recall that any local minimizer of f on &p is a global minimizer
as well {cf. Proposition 2.304). Obvicusly, a schedutle S can only be a local
mimimizer of f on Sp i there is no feasible descent direction at 5. Thus, any
local mimbmizer S of f on Sp must satisfy the following necessary optimalisy
condition {defining an inf-stationary point, see Kiwiel 1986}

inf{g{z}imm=0and z; —z; 2 0for all (i, /) € B(S}} =0 {3.4)

Jondition (3.4) s sufficient for § Lo be a local mivimizer of fon Sp if [ s
convex or i £ is differentiable and V f{8) # 0. The objective function of the
ned present value problem is an exsmple of a convexifiable and differentiable
objective fiunction f for which VF(S) # 0 for all § € Sy,

A classieal approach to computing loeal minhmizers are so-called steepes!
deseent algorithms, which constrict a sequence §1, 5%, .., S¥ of iterates such
that F{SPF) < f{S* Y for all == 1,.. ., v~ 1. Steepest descent algorithimns be-
long to the class of feasible direction methods introduced by Zoutendijk {1960).
Feasible direction methods offer an efficient way of solving nondincar program-
ming problems with lnear inequality constraints {¢f. eg., Jacoby et al. 1972,
Sect. 7.5, or Simmons 1975, Scct, 8.1}, in particular if the directional deriva-
tives are casily obtained. Iterations of steepest descent algorithins consist of
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two wain phases: the direction-finding phase and the lne-search phase (see
Hirtare-Urrnty and Lemaréchal 1993, Sect. 112} Fhe direction-finding plase
determines a steepest feasible descent direction z at the cuyrent iterate § or
establishies that there is no feasible descent direction at 5. Line seurch provides
a feastble destination 5" = 5+ oz with f(§ + o2) < f(5). ¢ is termned the
stepsize. Algorithm 3.4 specifies a generic (primal) steepest descent algorithm,

Algorithm 3.4, Primal steepest descent algorithm

OGuipui: Local minhmizer 5 of [ on set Sy,

determine some time-feasible schedule 8, e, § = BS;
repest
deterntine normalized feasible direction z at § with mininnmm g{z); (= direction-
fiucing phase «}
if g{2) < 0 then {* 3 is a descent direction +)
determine stepsive o in N ab §; (= line-search phases)
set &= 5oz
untii g{z) >
return 5

We now deal with the direction-finding phase in more detail. The prob-
lem of finding a normualized steepest feagible descent direction atb schedule §
reads as follows:

Minimize ¢{z}
subject to zy - 2, 2 0 {{{,4) € E{S)}

3.5
7 =0 (3:5)

i

‘The feasible region of problem (3.5} Is compact and nonempty sinee z = §
i always a feasible solution. The cholce of vector worm || - § s of wro-
clal unportance for the efficiency of the steepest descent algorithm. For
what follows, we assnne that |- | I8 chosen {o be supremmum norm, te.,
lzlf = Hzfleo m maXiev |z, which means that normalization constraint
Ho] € 1can bestated ag —1 < & < 1forall £ € V. In this case, all constraints
of problem {3.5} are linear, and {3.5) can easily be transformed into a lincar
program by introducing an additional variable y; for each ¢ € V together with
the canstraints y; = 97F/05,(8) 2 and v = 87 f/85:(8) 2z and replacing g{2)
with 3 .y ¥

In the following we constder a relaxation of problem (3.5} which can be
solved in linear thme, To thiv end, we again sssume that |28« f2lL,, but we
only consider a subset of the temporal constraints that are aclive at 8. The
active temporal constraings to be taken into account are chosen such that the
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corresponding rows of the cocfficient matrix are linearly independent. As it is
well-known from the theory of network flows, the direcied graph G = (V, E¢)
whose arc set Ko contains the arcs belonging to the selected active temporal
conslraints represents a spanning forest of project network N {see, e.g., Almja
ab al. 1993, Sect. 11.2). Proposition 2.28b tells us that & ean be chosen to bhe
a spanning tree of N precisely if S is a vortex of Sy, The steepest descent
problem (SDP) at schedule § can now be formulated as follows:

Minhnize  ¢(z)

subject to 25—z =0 {{i,7) € Eo) (SDP)
zg wx £}

------ 1<%<l (feV)

A direction z solving steepest deseent problem (SDP) is called an optimal
direction at 5. Of course, we have to pay a price for the efficiency with which
{81} can be solved. At degenerate points § of 87, where K ¢ E(5), optimal
directions may no longer be feasible directions at 5. In the latter ease, line
search will provide the stepsize o = (, and the set of selected active constrainty
is modified without leaving the cnrrent jterate 5. Since (8DP) is a relaxation
of yproblein {3.5), schedule & satisfies the necessary optimality condition (3.4)
if z == 0 s an optimal direction at 5.

We show how for a given schednle S € &r the steepest descent problem
can be solved in Hnear time. The procedime is based on two fundainental
properties of problem {SDP). Fust, it always possesses an integral solution
and second, # ocan be decomposed into two independent subproblemns with
linear objective functions,

Proposition 3.3. Lef [ be a differentiable or sum-separeble convenifiable ob-
gective function. Then there is en integer-velued soluiion z to {SDP).

Proof. If f is differentiable or sum-separable, then objective function g{z) =
S ievirs0 OTTIOSHS) 2 4 3 v 0 07T /85:(8) 2. 1t follows that g is Hnear
on each octant and contimous. Since z = 0 is a feasible solution to {8DP},
the continuity of g bmplies that (SDP} is solvable. In addition, the coeflicient
matrix of (SDP} is totally unimodular, which means that a feagible solution 2z
niinimizing ¢ on a given octant can always be chosen to be integral. [}

We proceed with the decomposition of the steepest descent problem {S1DP)
mbo two independent subproblems where we only consider nonuegative di-
rections z = 0 or nonposiiive directions z < 0 and which are respectively
denoted by (SDPH) and (SDP 7). For {SDP") objective function ¢{2) eqnals
V(87 2, and for (SDP™) we have g(z) = V" f(5)" 2.

Minimize g{z) = V(ST 2 || V" H(5)7 2
subject to z; — 2z 2 0 {{(4,5) € Eg)

(SDP*} || (SDP™)
zZp =0
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We first need two preliminary leminas.

Lemma 8.4. Let f he some convezifiable objective function and let 8 be a
time-feasible schedule. Then

VHF(S) = VT J(S)

Proaf. We only consider the case where § s an interior point of Sy siuce by
assumption, [ is differentiable at boundary points of Sp. Let ¢+ Sp = X
be a Cludiffecmorphism satisfying the conditions of Definition 2.29 and let
g = foyw!, Since ¢ Is continuons, @ = () Is an nterior point of X. Let
Vi 5) be the Jacobian matrix of ¢ at pomi S, For given direction z & B™+?
applying the chain rule (see Shdpno 19946, I’i{}posziion 38 or S{'lwibes I(}Q(}
Theorem 3.1) then provides df|
that  is continuously differentiable and 1.31<11 i s fzmtc««\ alued convex &nd
thus continuously Bouligand-differentisble ab interior point of its domain).
We then have —df|s{—2) = —dif|.(~y). The convexity of 4 implies that
----- d’z;’;;,{,{'—y) < deflp{y) and thus --w-dfg (z) < df%g(z} {see iim‘m Urr uty and

and 3 ?ﬁ«-» S} e e fle{ ;). g

Lemma 3.5, z is o feasible solution lo (SDP) if and only of max{0,z) und
win{0, z) wre feasible solutions to (SDP),

Proof, Let z% e max(0, 2) and 7 e minf@, ). Trivially, for any direction
z € B™ we have z = z¥ 4 27

Sufficiency: Let H denote the coeflicient matrix of constraints z; - 2 = 0
({7,491 € By, which coincides with the negative are-node incidence matrix of
sparning forest G H 27 and 27 are feasible solutions 1o {SDP), then Hz¥ > 0
and 27 2 0, which implies that ﬂz"" b ™ e H{zt 427} = H., = 0. {n
addition, z{; i Af,{}" A2y w and 2 = 2 +w7 Z el oo el and z; w2, E~7 """
1w Qulforallie V.

Necessity: Let 7 and 77 be two feasible solutions to {SDP). Then it follows
from elementary calewdus that max{z, 2} and min{z, 2} are feasible solutions
to (S as well. By choosing 27 = 0 we obtain the feasibility of directions
zF and z7. 0

Theorem 3.6, Let 27 be a solution to (SDPY) and let 27 be a solution to
(SDP~Y, Then z = 2+ + 27 solves problem (SDP).

Proof. We first show that g(z) = g{z*) + g{z™). As a consequence of
Lemmma 3.4 we have g(z) = 3., max(0*f/08;(S)z, 87 /85,(8)z), from
which it follows that ¢ is comvex. The positive lhomogeneity of g then
implies the sublinearity and thus the subadditivity of g, Heuce, g{2} =
gzt +27) < glzF) + g(z7 ). Since max{$, 2} is a feasible solution to {SDPT)
{see Lemina 3.5}, we have g{z1) < glmax{0, 2}}. Symmetrically it holds that
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g{27 ) = glmin{0, 2}). By definition g{max{0,2}) = 3, ov .. o0 GOS8z =

9(z) = S iovin a7 F/05:(8) 2 and g(min(0,2)) = oy, -0 0 f/05(8)x.

Thus, g{z%) < g(2) ~ o{min(0, 2)) < g(z) ~ ¢{2" ), e, g(2) = g(zF) +g{z7 ).
Due to Lenuna 3.5, problem {SDP) can now equivalently be stated as

Minimize g{2"} + g{2"}

subject to 2f — 220, 2/ =2 20 {{(i,]) € Bg)

.«.f:,y}'!:o
'("ﬂ '«O
O0<2igl, —1<2/<0 (ieV)

Since in the latter problem the vectors 27 and 27 are unrelated, the problam
decomposes into the two independent problems {SDPY and (SDP) with
corresponding solubions 2t and 27, 3

For solving problem (SDP¥} we make use of the following property of
forests. A forest G with al Jeast one node pessesses a source ¢ with at most
One sHecessor of a sink £ with exactly one predecessor. We call such a node 7 an
extrenal node of G, Now let ¢; 1= 31 /88,(S) be the right-hand Si-derivative
of f at point S. If there is a sonrce ¢ 5 0 of spanning forest G with ¢ < 0,

is a sink 7 #£ 0 of G with ¢; > 0, then 27 = 1 for any solution to (SDP*). In
both eases node £ {and all incident arcs} can be deleted from G I there is 1o
sonree { with o; < 0 and no sink ¢ with ¢ > 0, then V onecessarily containg a
sonvee © with at most one successor § {and o; > () or a gink 7 with exactly one

he., 2zl = z;f’. Thus, nodes ¢ and 7 can be coalesced into an aggregate activity

® !

with partial derivative ¢; +¢; {which corresponds to the directional derivative

£

perform these steps 1ntil all nodes aside from 8 have heen deleted from @,
Algorithin 3.5 provides an O{n)pthne huplementation of the above pro-
cednre, where Pred(i) = {j € V | (4,4} € Eg} and Suceli} = {j e V |
{#, 7} € FE¢} denote the sets of mmediate predecessors and snccessors of node ¢
n . To achieve the linear Line complexity, we nse an indices-representiation
of forests, which is similar Lo the data structure discussed in Abmia et al
{19933, Sect. 11.3. We associate two indices pred, and ovient; with each node
i ¢ V. For each component € of &, we identify a specially designated node,
called the root of € If £ 18 not a root node, pred; provides the predecesser of

index orient; equals 1 if & containg are {pred;, i} and ~1, otherwise. For a
roet node €, we set pred, 1 and orient; = 0. In addition, the nodes 1 of 7
are stored in some deptle-first traversal order of ¢, starting in each component
C at the root node. Then the last unvisited node 7 € U with respect Lo that
order is always an extremal node of the subgraph Gy of G induced by set UL
If orient; < (3, 7 is a source of Gy, and if orient; = 1, 1 is a sink of Gy, For
orient; 3 8, the predecessor § € Pred(d) or successor 7 € Suec{d), respectively,
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is given by pred;. The sets C{7) of caslesced nodes can efficiently be identified
via a lahelling technigne.

Algoritha: 3.5, Direction-Auding phase

Input: Ohjective function f, schedule 5, spanning forest & of project network V.
Qutput: Solution 2" to (SDPT)

ot B o V, 2% =0, e = VIF(S), and C(0) = {i} far all 4 € V;
while {7 4 {0} do

determine s node 2 € 1,45 0 with Succ(f) U = 8 and Pred(dy N = {j};

9. i o > {1 then sed z;:“ = 3 for all b & Qi)
else sel ¢; = ¢y + o and C{F) = C{5)y L CLHY,
return 2%

The mirror probiem (SDP"} can be solved hy a similar procedure where 27
is replaced with 2™, vector ¢ is initialized with the left-hand derivative V—F{S)
at schedule 5, the roles aof predecessars and snccessars in G are reversed, and
z; 15 put ta —1 on Hune 9. Theoran 3.6 says that 2 = 2 4+ 27 is an optimal
direction at 5.

In general, the ine-search phase at schedule 5 is performed by comput-

minimizes f an the line segiment £ in & passing thraugh § in direction z. In
certain cases, however, it i more efficient to proceed with a snboptimal de-
scent step {see Jacoby et al, 1972, Seet, 5.1} because fivst, finding an oplimal
stepsize s cxpensive ar secand, maving {0 a minimizer S on line segmunent £
may cause a sigzagping phenemenan. Schwindt (2000¢0) and Schwindt and
Zimmermann (2001} have used the following stepsize o in their steepest de-
seent algorithins for the tatal earliness-tardiness cast and the net prosent value
problems. Bach activity ¢ € V with z; % 0 can at most be shifted putil same
temparal canstraint S; — 5 = &y with {4, §} ¢ g becomes active, Le.,

Sy~ 8 - by

7 <o) FEFVEE]

(f.f)efin ey 2 -z

ey {iy may be cqual to 0 if 5 is a degenerate point of Sy, I f is nat binary-

menctone {see Subsection 2.3.1), we stop shifting ¢ when crassing a kink of £,
ie

yene P 23 F
o < oa{i) = min{e’ > 0| 35 (S+0o'2) < %(S—i—a’z)}

where far canvenience we define minf - oo, Note that we have mingev oo{i)
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Accardingly, stepsize ¢ is chosen to be
o = min{min ey (1), min og{t 3.6
{égv ( ) ey z( )} ( }

where oa3fi} := 0o for all { € V if § is binary-monotane. Far the genceral case
of an ahiective function that is neither plecewise affine nar hinarvamonatene,
we in addition have

o < min{e’ > 0] dfigie{2) =0}

When meving ron 8 te destination 87 = 84 oz, spaaning forest G is
npdated as follaws. At first, we delete all ares (g, h) from @ {or which 2, > z,.
o w o (i} far some i € V', 2 new temparal constraint 55 — S; 2 §;; becomes
active and the carvespanding arce (4, ) is added ta G

For the time-canstrained net present value prohlem, Schwindt and Zhn-
meriann {2001) have shown the fellowing plausible statement, which readily
earries aver ta the mare general case of piecewise affine or hinary-manatone
ahiective finctions f.

Proposition 3.7 {(Schwindt and Zimmmermann 2001). If in Algorithm 5.3
the initial schedule iz chosen ta be the carliest schedule BES and the stepsizes o
are calculated aecording to (8.6), then of cach derate S there is o solufion z
to steepest descent problem (SDP) with 2 2 0.

Under the assnmptions of Propasittan 3.7, # is thus suflicient to solve sub-
problem (SDPYY for computing optimal direetions z

For piecewise afline or hinary-monotone objective functians, the mmuber
of iterates needed to reach a schedule 5 satisfying necessary Gpmn'ﬁ}ty CONm
dition {3.4) can markedly be deercased hy vsing an acceleration technique.
Consider the spanning forest G arising from deleting all ares (4, §) with 2; > 2z
and let ¢ be an activity with o = min{o (i}, o2{i}). Al components ¢ of ¢
cansist af nedes 7 with identical z;. If there is a ('ax'r}p&m'nt of G which does
nat eantain nade § and for whase nodes 7 we have z; # 4, those nodes can
he shifted further withont recamputing a new steepest descent divection. By
shifting the components in order of nondecreasing minbnum slacks between
component nodes ¢ and nodes § with 2z > 25, we obtain the acceleration step
displayed in Algorithm 3.6, If the one-sided S;-derivatives of f are ohtained in
eanstant O(1) time, the algorithm can be implemented to 1on o O{mlogm)
time by maintaining a Fibonaeci heap of ares (4,7} € £ with z; > z; and
a Fibonaccl Ieap of pades 7 € V with 2 # 0 that are sorted accarding to
nondecreasing slack thnes “4_& and og(1), respectively,

We Anally netice that }ff }sj hinary-manctone and z = 4, the residting
destination schednle § is always a vertex. Furthermare, it can be shown that
in case of regular and in case of so-called anfiregulor ahijective functions f,
which are compancniwise nonincreasing in slart thnes 5, the steepest descent
algarithin with the acceleration step included reaches the respective minimiz-
ers 1.5 and LS after one Heration, independently of the initial schedule chosen
{see Schwindt and Zinnnermann 2001},
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Algorithum 3.6, Acceleration step

Input: MPM project network N = (V, F,8), schedule 5, divection z, spanning
forest G of project network N.
Gutput: Destination schedide S, updated spanning forest

for all (1,7} € Eg with z; > 2z do set B = Eg\ {{i, 1}
while z #  do
determine a node ¢ € V with 2z % 0 and minipnun slack o = minfe {8), o2{d));
if o = ¢1{4) then (+ update spanning forest G #)
seb Bo = Eg U {(4,73} for some are (1,7} € E with 2; > z; aud RATL i+

i

return schednle S

3.2.3 Solving the Relaxations: The Dual Approach

Let p bo a relation i asctivity set ¥V to be extended by a minhnal delaying
mode {1} x B in the course of Algorithin 3.3, For computing a minimizer on

it is often more expedient to use a dual approach rather than re-performing
the primal steepest descent algorithm from scratch, The basic principle of the
dual flottest ascent approech is to start with the minimizer S of f on Sp{p)
and to perform an ounter approximation towards set Sp{p’), where the dis-
tanece to Sp(p'} is stepwise decreased at locally winhual cost. More precisely,
at each iteration we consider moving i feasible directions z such that first,
2y — 2 2 Viorall § € B and second, the divectional derivative g{z} al Herate §
at S. Let A8, 8p(p)) = infgres,on 18 = Slloo w max;eg{S; + p — 5517 =
(S; b pi = mingep 533 denote the distance between S and set Sp{p). The
first condition ensures that A(S + o2, Sp{p')) < A(S, Sr{p")) provided that
stepsize o > 0, whereas the second requirement means that the first-order ap-
proximation of the increase in the objective Bunction value whoen moving from
S to S + oz is mindmum. We potice that if [ is not a convex and piccewise
affine function, this increase may also be negative, and thus in the general
case we liave to consider normalized flnttest ascont divections z st 5.
Algorithm 3.7 shows a generic flattest aseent algoritho, where for simmplic-
ity we assume that p = § aud Sp{p’) # 0. AL cach iteration of the algoritlun
we first remove those activities 7 from minimal delaying alternative 8 for
which precedence constraint §; > 8 + p; has already been enforced. The ares
(i, 7} corresponding to the latter precedence constrahits are added to proj-
ect network N By order to ensure that they are observed st all subseqnent
iterations. Next, we compute a normalized flattest ascent direction z at S,
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descent direction z at 8. Otherwise, we determine an appropriate stepsize o,
move to desthiation schedule 8 4 oz, and put 8 o § 4 oz,

Algorithm 3.7. Dual Habtest ascent algorithm

Input: MPM project network N = [V, E,8), objective hunction f, thne-optimal
schedide S, minimal delaying mode {3} x B
Output: Local minbnizer 8§ of f on set Sp{{i} x B}

repeat
vernove 7 from set B oand add are (4, 7)) with weight & = to N
determine normalized fattest feasible ascont direction z at 5y {xdirection-
finding phase +}
H B Por g{z) < 0 then
doternine stepsize o in N at &) (= linesearch plase *)

vatil &= and gla) =0
retiurn 9

In what follows, we study the direction-finding and lne-search phases in
more detail, During the direction-finding phase of the algorithm we have
to determine a Hattest feasible ascent direction z at the given iterate S. In
analogy to (3.5}, the latter problem can be fornmlated as follows, where {i} x B8
ts the minimal delaying mode under consideration:

Minimize ¢z}
subject to z, ~ 2, 2 0 {{g, k) € E(S))

g = i (3?)
/":_?'WZZ'ZZ (j@{g)
izl <1

The normalization constraing [[zf < 1 way be deleted i f is convex and piece-
wise affine (e obiective functions of the total ventory holding cost aud total
earliness tardiness cost problems are examples of such an objective Function).
We notice that in cortbrast to the steepest descert problemn {3.5), problem (3.7}
does not necessarily possess o feasible solution. 1t is castly scen, however, that
mmder the assmmption that relation p is thne-feasible, Le, Sp(p’) % 8, there
is always a flattest ascent direction at S.

In analogy to the primal steepest descent algorithm treated in Subsec-
tionn 3.2.2, we choose the vector novm § - [ in (3.7} to be the suprenunn norm
and relax the problem by replacing the are set E(S) belouging to all active
constraints at § with the arc set Eg € E(S} of some spanning forest & of
project nefwork N, The resulting problem will be veferred to as the flatlest
ascent direction problem (FAPY at 5
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Minimize  g{2)

subject to z, — 2z, =0 ({9.h) € Ex)
Zp o () (FAP)
zy ez 2] (1€ B)

1<z <l (heV)

A solution z to (FAP) is again called an optimal direction at 8. O approach
to sobving the flattest ascent divection problem ix based on a decomposition of
the problem into two subproblems, where we raspectively enforce all activities
j € B to be right-shifted {ie., z; = 1) or activity { to be left-shifted (e,
zg w1}, The problems where in (FAP) we replace z; - 2; > 1 (j € B) by the
corresponding constraintys 7 = O and 25 = 1 {(j € By or 2y = ~1 and z; 2 0
{ € B) are denoted by (FAPT) or (FAP™), respectively,

Proposition 3.8, Flubexd ascent problem (FAP} s unsolvable if and only o
botly problems (FAPTY and (FAP™) are unsolvable, If (FAP) is solvable, it is

Proof. Analogously to the proof of Proposition 3.3 1L can again be shown that,
if (FAP} is solvable, there exists an integral solution z to (FAP). In the latter
case, 7, may assunre the two values O and -1 If 2, = 0, we have z; = 1 for
all € B For 2 = —1, the constraings 2, — 2z, 2 1 {(j € B) turn into z; = 0
{ije B). [y

As a consequence of Proposition 2.8, an opthmal direction z 4t S can be
compubed by solving both subproblems (FAPT) and (FAP™) and choosing

descent problem (SDP), problem (FAPT) can be solved by nsing Algorithm 3.5
for (SDPT) and {ts analogue for the mirror problem {SDP™ ). To this end, we
pub ¢ i= o0 and ¢; = —oo for all § € B when we apply Algorithm 3.5, and
we put ¢ = 00 and ¢ == oo for all § € B when msing the algorithm for
the wivror problem. Problem (FAPT) can be dealt with amalogowsly. In sum,
computing an optimal direction z at § necessitates four calls to the diredion-
finding algoritloms from Subsection 3.2.2 and thus can again be achioved in
linear time.

The following proposition shows that if at current iterate S moving i any
feasible descent direction 2 at 5 would increase the distance between § and
Srip'), thent {FAP) can be solved by ouly one application of Algorithm 3.5
and its adaplation for the mirror problem. 1t can casily be seen {of. Schwindt
2000¢) thet the conditions of the proposition are satisfied at each lterate if f
is convex and piecewise affine,

Proposition 3.9, Let 5 be a fume-feasible schedule and asswine that for given
minimal deloying mode {1} x B, 2 = 0 solves the sleepest descent problem
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(SDP) at point S with additional constraints z; — 2z 2 O for all j € B. I
(FAP™YY 45 solvable, o is solved by some direction 2% > 0, and +f (FAP™) is
solvable, i is solyed by some divection 27 < 8,

Proof. Let 2* be an optimal solution to (FAPY). Since 27 := max{0, 2') sat-
isfies all constraints of problews (SDPY {compare the proof of Lemma 3.5)
and ﬂ; w z¥ w1 for all j € B, z¥ 15 a feasible solntion to {FAP)' as
well, and thus frow the optimality of &' i follows that g{z") = ¢(2'). More-
over, direction 27 = min{0, 2} is a feasible solution to problem (8D} with
v eVizl<0 G F10S{8Yz! = g{zt) + g2}, Since the optimal objective fune-
tion value of problem (SIDP) with 2, — 2, 2 0 for all J € B equals 0, it holds
that ¢{z") > 0. We conchude that g{z}) = ¢{z") — g{2"} < ¢{2), which duc
1o g{zh} = g{z') provides g{zt) = ¢(z'). Trom the feasibility of direction z7¥
theu follows the assertion. The proof for problem (FAP7) is analogous, where
z7 = min{0, 2Y and 2% 1= max(8, 2’} il

For given optimal divection z, the Hne-searclh phase yields an appropriate
stepsize o > 0 such that

o <oald) =9 +p— 8

for all § € B, o3{j} s the amonut hy which the thne log between Lhe starts
of activities ¢ and j bas to be increased for satisfying precedence constraiut

is time-feasible and we do not move beyond a kink of ¢, Le.,

s ynin{ i R}, i hY, minoa{j
o = min{puin oy (k). mig e2(h), mip a3(7})

3.2.4 Branch-and-Bound

By providing the enumeration schome given by Algorithe 3.3 with a search
strategy, consistency tests, and lower bounds, we obtain & brancl-and-bonud
procedure for problem {P) with convexifiable objective function f. Tor the
samne reasons as i Subsection 3.1.3 it is generally expedient to store list @ of
unexplored enyeration nodes iy a stack, Le., 1o perforin a depthe-first search.
Since the consistency tests discnssed in Subsections 1.2.4 and 1.3.4 do not refer
to the objective function, we mway again apply all those tests i principle. The
effectiveness of a given test, however, among other things strongly depends on
the particular objective function under consideration. As for the case of regular
objective functions, the shjective fuuction valne f{S) of # miuimizer S of f on
some search space Splp} may agaln serve as 4 Jower bound by on the objective
fusrction value of the best feasible schedule i Spp). Sclle {1999} and Kiumnns
{2001h) have used the technigne devised by Méhring ef al, {2062) based on
Lagrangean relaxation of the resource constraints {see Subsection 3.1.3) to
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compaite lower hounds for the net present vahie and total eariiness-tardiness
cost problems, respectively, with renewable resources.

Sometimes relations p con be exelnded from further consideration becanse
they are dominated by other relations o' in the sense that elther the ahsence
of feasible schedules in Sp{p’) excludes the existence of feasible schedules in
Sr{p} or the minimnn ebjective function vahie of the best feasible schedule
in Sp{p'} can be proved to be not greater than for the best feasible schedule
i Sl The simplest type of dominance between relations is given by the sot
inclusion of relation polytopes: relation o doininates o ¥ Sy(p) C Sr{p'). Sinee
spel dominance rufes dofine a reflexive relation in the set of relations, one has
to ensure by appropriate Hebreakers that Yeress-pruning” {ie, relation pf
dominates relation p and vice versa) does not occur. The branch-and-hound
algorithm way apply several dominance rules to newly gencrated relations p
with corresponding minimsl delaying mode {4} x B,

The first dominance rule is as follows (ef. De Reyek and Herroelen 19984).
We add all activities i € A{S. 1)\ B with dj, > 0 for some j € B to set B
hecanse they are delayved as well when shifting activities § & B behind the
completion of activity 4. I there s a minimal delaying alternative B’ ¢ B with
B¢ B, relation p is dominated by relation pf belonging te minimal deloyiug
moede {1} x B’ The second donunance rule refers to a (possibly indueed)
mininuun time lag between activity ¢ and some activity ¢ of a delaying mede
{#'} x BB with the same minimal delaying altersative. ¥ either {1) dis+p: > piv
or {2} dyy + 9 = pye and {8s tle-breaker) ¥ < 4, then relation p can be
fathomed because the completion time of activity ¢ Is greater than or equal
to the completion tine of activity 4.

Whereas the first two rnles establish dominance between child nodes p of
one and the same parent node, the following subsel-dominance rules compare
the recent child nodes p with {arbitrary) relations p' frow which we have
brapched formerly or which remain on stack €. The first subset-dominance
rule has again been proposed by De Reyek and Herroelen (19984}, If the whole
search space Splp’) of a relation p’ has been explored and if ¢/ is a subset
of p, relotion p can be fathomed. This rule can be hopleented 0 run quite
efficiently by exploiting two properties of the cuumneration tree {see Schwindt
1998¢). First, o/ C o for all descendants p” of relations ¢ and sccond, in
ease of a depth-first sesrch the parents p of relations o' with C-inaximal
completely explored scarch spaces Sp{p'} are ancestors of p.

Newmagn and Zinunermann (2002) have nsed & generalization of the latter
rule in their branch-and-bound algorithm for the net present value problem
with renewable resources. Cormparing relations p and g does not take into
acconnt the time lags that arve induced by the distance matyix £, In other
words, we may have Syp(p} © Splp') though p 2 /. Rather, condition S¢{p} C
Sp{p’) can be checked by {clementwise) comparing the corresponding relation
wmatrices D{p} and D{p), ie., Sr{p) C Sy{p’} precisely if &, > d‘;j for all
Lie V.
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The following subset-dominance rule by Sehwindt (1998¢) compares the
recent child nodes p with relations ¢ on stack Q. I ©Q contains a relation
g C p that is nol an aucestor of p, then relation g can be deleted becanse
Srlp) € Sp{p'}. This rule offers the advantage that no additional memnory is
reguired for storing enwmeration nodes alveady visited, Of conrse, the rle can
also be applicd In a way Lo compare relation matrices rather than relations,

3.2.5 Additional Notes and References

I this subsection we briefly survey procedures for project scheduling with
specific convexifiable objective fanctions snd general temporal constraints. We
firgt deal with prirnal slgorithins {or the time-constrained case, which inay be
used for solving the resource relaxation of problem {P). Kemburowski {19943)
was prohably the first whe studied the time-constrained net present value
problem with general mininnnm and maxhinmum thme Jags between the start
thues of activities. He lias proposced an adaptation of the approach by Grineld
{1672} for ordinary precedence constralits to the case of general tomporal
constraints, Grinotd’s procedure 1s based on the transforiation of the prob-
lem Into a linear program by specifving a C!-diffeomorphism ¢ which satisfies
the conditions of Defiultion 2,28, Using specifle properties of the linear pro-
grauy, the problem is solved by a vertex-following algorithm, the methods by
Grinold {1872} and by Kembuwrowski {1990) differing in the pivot rule used.
De Reyck and Herroelen {19988) have generslized the recursive-searel pro-
cedure by Herroelen et al. {1996) for the precedence-constrained net present
valne problem to the case of general temporal constraints. Starting at the
carliest schednle, the activities of sublrees ropresenting active temporal con-
straints and possessing a negative net present value are stepwise delayed in
order to Increase the net pregsent value of the project. Iu contrast to all other
procedures, the temnporal constrahigs are represented by the distance matrix,
Le., thelr transitive closure, rather than by the project vetwork. Nemuann
and Zimunerniann {2000} have cownbined Kamburowski's procedure, equipped
with & new pivot e, and a preprocessing method proposed by Herroelen
et al. (1986). The latter method delays all terminal activities with uegative
cash flows up to their latest start thme {an activity is called terminal if it does
not have snccessors i project nebwork N aside from the project tenmination
event 72+ 1}

Table 3.3 compiles the resulls of an experimental performance analysis
comparing the slgorithms for the time-constrained net present value prob-
fem, The rows “Grinold {1972} aud “CPLEX" refer {o {he adaptation of
Grinold’s procedure to general teinporal econstraints with the original pivot
rule and the primal simplex algorithin implemented in LP solver CPLEX 6.0
{among the different LY solvers available in the CPLEX package, the primal
simplex method has shown the best performance). The performance of the
algoritluns has been evaluated on the basis of two tegt gels generated with
ProGen/max. The test sets contaly 1440 and 90 projects with 160 and 1600
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activities, respectively (see Schwindt and Zimmermann 2001 {or details). The
vesiis far the algarithm by De Reyck and Herraclen {19984) are quoted from
De Reyek {(1998). We provide the mean nnmber #48 of Horations needed to
reach an optimal solution {where “n.a” indicates that this munber is vot
availahle) and the corvesponding mean conipntatian thue {4, on an Intel 486
porsanal camputer with 50 MHz clock pulse {n == 100} and a Penthun persanal
compnter with 200 MHz dock pulse {(n = 10060).

Table 3.3 Performance of primal algorithims for the time-constrained net present
value problam

Algaritlmn 7 Hik tepu

Grinald {1972) 00 22 26w
1008 473 174

CPLEX 108 noa BT0ms

000 n.a 118.8s

Kamburowski {1990 100 24 30ms
1006 LYY 2.5

e Reyok and Herroelen {19985 100 ma B3lms
Neumarm and Zirmmermrann (20000 100 12 17ms
10800 219 1.0s

Schwindt and Zimmermann (2001} 100 4 10ms
0o v (1Es

The resulity depicted in Fable 3.3 penmnit several condusions. First, the
mothods based on Grinold's vertex-following algorithm show a mmnch bettor
porformance than the primal shnplex methad applied ta the lincarized prab-
lemn. Seeand, the prepracessing method allows to save roughly ane half of
the comnputation time, Third, the efficiency of the recursive-search method is
poor, which is presmmally less dne to the reanrsion itself than rather ta the
uge of the distance matrix, whose compntation is expensive and which canses
alinost any vertex of set 87 to be degenerate. Ax a consegnence, the algoe-
rithm perforrng many pivet steps that do not lead ta a new vertex. Fourth,
Lhe steepest descent method appears as the most effictent solution procedure
far the thme-constramed pet present value problem. I we reduce £, by the
time necded for computing the earliest schedule, the speed-np factar hetween
the procedire of Nemrnann and Zinnnermann {2000) and the steepest descent
algorithm ix maore than six {¢f. Schwindl and Zimmermann 2001). The gmall
value for #40 can he maindy attributed to the acederaiion step, which far
n = 1000 rodunces the number of iterations by more than 90%. This redue-
tion does not lead to an equally large saving in computation time hecanse
the acceleratian step ix more thne cansumming than simple Ene search (recall
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that the thne complexity of the acceleration step is O{mlogm), whereas line
search can be doue in Ofm) time).

Next, we consider the time-constrained total earliness-tardiness cost
problens. The only algorithm for this problem wo arve aware of is the steepest
descent procedure proposed hy Seclawindt {2000}, For the special case where
only mihmng e lags are present, Vanhoucke et al. (2001} have devised a
recursive-scarch procednre, which is an adaptation of Herroelen ¢f all’s algo-
rithm for the net present value problem. The time-constrained total carliness-
tardiness cost problem can readily be transforined inte a litear program by
introduciug two continmouns variables e; = 0 and ¢; > 0 for each activity i € V
along with the constraints e; > oy — 5 —py and & > &; 4 py ~ d;. The ob-
jective function of the lear program then is 3.y (wfe; +wit;). Obvionsly,
for Sp # ¥ there is always an optimal solation satisfving e; = {d; — S — )7

the tardiness of ¢ Notice that the existence of au equivalent linear program
does ol imply that the total earliness-tardiness cost is a Hnearizable objective
fuuction i the sense of Defuition 2.29, which is obviously net true.

Table 3.4 comnpares the primal simplex algorithun with the steepest descent
procediure. The analysis is based on two test sets with 100 and 1600 activi-
ties, respectively, containing 90 instances each (details are given in Nemuann
et al. 20035, Sect. 3.5}, The computations have been performed on a 200 MHz
Pentimmn personal compuior,

Tabje 3.4. Performance of primal algorithms for the lime-coustrained earliness-
tardiness problem

Algorithm n H#it e
CPLEX 168 367 539 ms
1068 50335 bHR.As

Schwindt {2000¢) 100 15 7 s
1066 138 385

The results are i line with those obtained for the net present valie probe
lenir. Again, the stecpest descent algorithin clearly ontperforms the LP solver.
However, the gap between both approaches is less huoportant, which is dne
to two reasons, First, though the linear program contains more variables and
constraints than for the net present value problem, the computation thme de-
ereases since the coefficient matrix of the constraints is now binary instead of
reai-valied. Second, sinee the objective funetion is no longer binary-monolone,
the stepsizes for the steepest descent algorithm are typieally much smaller,
which is also tudicated by the large inerease i the mrmber of Serations.

We proceed o the pel present value and total earliness-tardiness cost
problems with renewable or cupulative resonrces. We restrict onrselves Lo
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procedures that are dedicated to the case of general temporal constraints be-
bween activitles. For a review of varlous types of precedence-constrained net
present value problemns and solution procedures we refer to the survey pa-
per by Herroelen et al. (1997). Algoritlnns for total carliness-tardiness cost
problems with precedence constraints and renewable resonrces have been de-
vised by Serafini and Speranza {19944,0) and Vanhoncke et al. {2001}, For
golving the resource relaxation, Serafind and Speranza exploit the dualiby re-
Iationship between the latter problem and the convex-cost flow problom {see
Subsection 3.2.2).

We first consider the net present value problem with renewable
resources. The branch-and-bound algorithims by De Reyek and Herroelen
{19986) and Nowmann and Zimmermann (2002) are both based on the enn-
meration scheme disenssed in Snbsection 3.2.1, The algorithms mainly differ in
the procedures for solving the relaxations at the enmneration nodes. Whereas
De Reyek and Hexvoelen (1998b) use thelr {primal) recursive-search method,
Nenmann and Zivinerimann (2002) solve the initial resource relaxation at the
root node by the primal steepest descent algorithm by Schwindt and Zim-
mermana (2001) and the relaxations at descendant nodes with a dual methed
resembling the flattest ascent algorithm dealt with in Subsection 3.2.3. In
addition, Be Reyek and Herroclen {1998%) and Newnaun and Zhnmermann
{2002) have psed disjnnctive activities tests and dominance rales for redncing
the size of the ermmeration tree. Selle and Zinmermaun (2003) have proposed
a bidirectional priorivy-rule method for approximatively solving large-scale
net presert value problems, Simdlarly to the heuristic by Franck {1999) for
the praject duration problem {see Subseetion 3.1.4), one activity is scheduled
per iteration, where the essential difference is that certain activities, nmunely
those with negative cash flows, are slarted at thelr lafest feasible start thae.
An analysis of this schedide-generation scheme in Section 4.1 will show that
the schedules obtained in this way are stable, provided that no nnscheduling
step is performed. Since the set of all optimal schednles may not contain a
gtable schedule, the heuristic may systematically migs the opthnal sohation.
A similar result is known for the minimization of regular objective fimections,
where the parallel schedule-generation scheme ylelds nondelay schedules {see
Koliseh 1996), anong which there s not pecessarily an optimal schedule.

Fable 3.5 shows the results of an experiiental performance analysis where
we have compared the three algorithing on a test set containing 1440 projecis
with 30 sctivities and 5 renewable resources each. A detatled doscription of the
remaining ProGen/max control parameters chosen can be found in De Reyek
and Herroelen (1998). We have hmposed a it £y, of 3 and 30 seconds on
the maxinm pinning time of the branch-and-bound algorithms, wlich refers
t0 a Pentimm personal compnter oparating at 200 Mz (for comparison pur-
poses, the compntation times have been scaled according to the elock pulse
rafio by a factor of 0.3 for De Reyck and Herroelen'’s branch-and-bonnd al-
gorithnn and by a factor of 2.5 for the priority-rule method). Since De Reyck
and Horroelen {19985} only report on the mumber of nstances for which the
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branch-and-bonnd algorithm has completed the enwmoeration within the re-
spective time Hmit, the values pou and pins and the valnes poogm and punk
have heen aggregated.

Table 3.5. Perfonmance of algorithms for the net present valne problem with re
newable resources

Algorithm fepu Popt  Dins  Propt  Pumk
De Reyck and Herroelen {160885) 3 58.1 % 41.9%,
s 755 % 24.5%

Neumanu and Zinmmermeann (2002)  3s 78.31% 44% 165% 00%
s B31% 44% 105% 0%

Selle and Zhmmermann (2003) 3wms LO% 44W 946% 0%

Not sarprisingly, the brapeleand-bound algorithim by Nenmann and Zim-
mermann (2002} seerus to be more efficient than the earlier algoritlun hy
Pe Reyck and Herroelen (19985}, The improvement npon the latber algorithm
s profsbly to be attribited 1o the tremendons difference in the thne needed
for solving the relaxations. The dual method typically runs in a small frac-
tion of the thue that is required {or re-oplimizing from scrateh the minimizer
with the primal steepest descent method after the addition of a mininwnl de-
laying mode to the current relation. Moreover, the primal method is by far
less thme-consmning than the recirsive-search procedire {see Table 3.3). The
priovity-rule method provides feasible schednles within & very shat amonnt
of time. The small propartion pu, of instances, however, for which the opti-
mal objective fiction value computed by the branclhand-bound algorithm
of Neumany and Zimmermnann {2002) can be found, indicates that the low
cornputational effort is pald for by some loss of quality, Nevertheless, experi-
ence with the project duration problem decnmented in Franek et al. {20018}
suggests that priority-rule methods may constitute a valuable allernative to
exact procedures when coping with projects comprising hundreds of activi-
ties. Finally, we notice that we do not give a deviation 4y from some lower
bound 15 on the minimum objective function valne because the latter quan-
tity may be positive, zero, or negative. The development of a suitable index
measuring the mean rermaining ervor of snbopthnal solntions for this type of
problem seems o be an open issue in literatnre,

Starting {from the representatian of minbnizers of a convex objective funge-
tionn on relation polytopes as spanning forests G of the projeet notwork N,
Seliwindt {20008} has develaped a neighborhood fanction for loeal search pro-
cedures (see also Neumann et al. 2003¢). Similarly to the steepest descent algo-
rithm from Subsection 8.2.2, the arcs af forest & correspond to active temporal
or precedence constrabnts, G s decoded into the corresponding thne-feasible
schedule by computing a local wainimizer S on the relation polytope Sr(p)
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where g is the relation in set V* arising from the ares of G that belong to
precedence constraints {precedence ares, for short). T'wo types of neighbor-
hood operations are considered, which transform forest ¢ into a neighboring
forest G, I 8 is feasible, & results from ¢ by deleting some precedence are.
Otherwise, a precedence are may be delcted o1 & new precedence are may be
added for which both the initial and terminal nodes are contained in a forbid-
den active set for 5. The reason why precedence ares may also be cancelled
even 8 Is not resonvee-feasible is that due to maxinnun thne lags, it may be
necessary to perform backiracking before attalning a feagible solution, When
some precedence are is deleted from ¢, the new minimizer of { is determined
by epplying the primal method starting at 8, In case a precedence arc is added
to ¢, the dual method is nsed.

We have tested a stinple randomized best-fit search hmaploanentation {cf
Kolisch and Hartmann 1999) of this approach for the total earliness.
tardiness cost problem with renewable resources. At cacl iteration the
algoritlm moves to the best neighboring forest, The quality of a forest G s
evaluated according to the objective hinction value f{5} of the corresponding
schedule 9 and is ,dwreo of infeasibility measured i terms of the excessive
workload 3, o, j(} {re{S, 6y — Bi)Fdl In order to avold cyeling, the gual-
iy is randondy biased. Each time the local search gets stuck in a deadlock
where S is not yet resonrce-feasible and no additional precedence arc ean be
added to ¢ without generaling a eycle of positive length in the corresponding
relation network N{p], we return to the best schedule found thus far. 10%
of the compntation time is allotted to the branch-and-bound algorithim by
Schwindt (2000¢) for the computation of an initial feasible schednle serving
as starting-point for the local search. If the braneh-and-bound procedure fails
in finding a feasible solntion within the impeosed time tmil, the search starts
at the mintmizer of f on set Sp.

Fhe results for the branch-and-bound method and the best-§it search pro-
cedure are given i Table 3.6. They have been obtained for the test set with
90 hngtances comprising 100 activities and 3 venewable resonrces already nsed
for the analysis of the algorithmms for the time-constrained problem {see Tha-
ble 3.4). Again, the tests have been performed on a 2060 MHz Penthnn personal
compuber.

Table 3.6. Performance of algorithms for the earliness-tardiness problem with re-
itewable resources

Algarithm Lepu  Popt  Pins  Prmopt  Punk  Oip
Schwindt {2000c) 3z 3.3% 13.3% 67T8% 158% 6.6%
s BT 133% TOO% 11.1% 65%
Wos 56% 133% TLI% 100% 64%

Schwindt (20008) 834s 33% 13.3% 756% 78% 60%
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Camparing the results from Tables 3.1 and 3.6 suggests that the earliness-
tardiness prablem is mnch more difficudt to solve Lo optimalily than the project
duration problem. The mean deviation Ay from the lower hannd g arising
from the vesonrce relaxation, however, ndicates that the guality of the sched-
ules found is camparable to thase coraputed for the project duration prohlem.
Thig deviation can be furthor decressed by stoppiug the envmeration afler a
short amaunt of tine and subsequently execnting the best-fit search pracedure
hased on the neighharhood functian of Schwindt (206048).

We conclunde the silsection by considering the capital-rationed net
present value problem, where the project is execnted with a Hmited bud-
got, [ that case, the funds available for disbursement depend on the ndtial
hudgel {possibly plus a credit line) and the difference of all past progress
payvments and paying outs, This sibuation frequently ocenrs in the building
industry, wheve the receipts from completed subprajects serve ta finance sue-
ceeding subprojects. It is readily seen that the cash halance can be interpreted
as 8 Cmm}}&twe resaurce wzth mim}te stor <},§f{-‘ c 1{)'1Citv fid zmd a safety stack

10(;3&11&3”1@3{,5 3 ot avents 1 € V", i f’ G (.mnudc‘, Wzth the (sth Hows cf . This
prajecl scheduling problem has heen treated in an early paper by Doersch
and Patbersan {1977}, who have devised an hdeger programming formudation
based an time-indexed binary variables x; being equal to ane i £ w5 and
zero, otherwise. The objective function then reads 3.\ }:f_ s, € fomaty.,
and the resaurce canstrainls can he written as

meinfE, LS

Y drwzR (t=01....d

eV e EE

A prierigy-rale methad far solving the problem has heen proposed iy Smithe
Daniels et al. (1996). The priority valnes are hased on delay penalties, which
arise from solving the dual of the tinc-constrained prohlem where the ohjece
tive function is replaced by its first-order Taylor expansian {as it has heen
shown by Russell 1970, the dual then represents a transsliprent problem).
Schwindt {20004) has addressed the capital-rationed problem as a net
present valne problem with cumidative-resouree constraints, His branch-and-
bomnd algorithim is based on the enomeration scheme from Subsection 3.2.1,
aird the relaxations at the ennmeration nodes are solved by Lhe dual flattest
ascent method disenssed in Subsection 3.2.3. Kinng (20814}, Sect. 8.2, has
propased a rmived-inteper linear program for a gencralation of the problem
setting where residual cash i lent from ane period ta the next and several
projects from a given portfalio are considered stondtanconsly. The objective
is to select the projects to be perfarmed from the portfolia and to schedule
the selected projects in a way that the cash balance at planning horizon d is
maxintized. Kolisch {1997} has investigated a variant of this prablern where
in addition, cash can be borrowed at an interest rate of o > « bat anly
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oie project is considered. For a critique of the underlying ssswuptions of this
model we refer to Kimms (20014}, Seet. 8.1,

Table 3.7 shows the results of an experimental performance analysis com-
paring the branch-and-bound algorithm with the CPLEX 6.0 MIP solver pro-
cessing Doersch and Pattersan’s integer pragramming formulation. The four
test sets nsed consist of 80 instances each with 14, 20, 50, or 108 activities.
For the projects with 10 ar 20 sctivities, the emphasis parameter of the MIP
solver huy been put to optimality, whereas for the projects with 50 and
100 activities, this parameter has been chosen to be feasibility, The MIP
solver and the brapcli-and-honnd algarithm have been stopped afler & maxi-
i compitation time of 100 seconds on a Pentimn personal computer with
200 MHz clock pulse.

Tabde 3.7. Parformance of algorithg for the net present value problemt with one
curiabive resonrce

A.igoriti‘am 7l Popt Ping Prapt Puok
Dacrach and Pasterson {1077} 10 73.3% 13.3% 0.0% 13.3%
20 BOO0%  0.0% T8%  42.2%
50 4.0% 00% 6% 94.4%
00 00% 0.0% 0.0% 1W0o.0%

Schwindt {20004q) 10 744% 25.6% 0.0% 0.0%
20 74.4% 25.0% 0.0% 0.0%

5 6% 6TW OLI% 6.7%

100 656% 89% 56% 200%

‘The analysis clearly demonstiates the sultahility of the cunmlative-resource
concept far solving this type of problems. Whereas the MIP solver is only ca-
pable of solving small problem instances of academic Interest, the branch-and-
bound algarithm terminates the emoneration within 100 seconds for almost
THY% of the projects with 100 activities. The instances with 30 and 20 activi-
tics are all either solved to optimality or shown te be unsolvable, [t is worth
noting that in contrast ta the case of renewable resources {see Table 3.5), the
difficulty resides rather in finding a feasible schedule than in proving optimal
ity. This, developing advanced search strategies Lo overcome this diffienlty
may constitute a valuable field of luture research,



