
Relaxation-Based Algorithms

Relaxation-based algorithms for rcsourcc-constraincd projcct scheduling with
rcgular or convexifiable objective functions rcly on thc first basic represen-
tation of thc set S of all feasible schedules as a union of relation polytopes.
By deleting the resourcc constraints we obtain the rcsourcc rclaxation, which
coincides with the time-constrained project scheduling problem. The latter
problem can bc solved efficiently by computing the minimal point ES of set ST
if f is regular or some local minimizer of the objective function f in set ST if
f is convexifiable. Clearly, the tractability of the problem is preserved when
moving from set ST to arbitrary nonempty relation polytopcs S T (p) . Starting
with the resource relaxation, i.e., with the empty relation, relaxation-bascd
algorithms iteratively put the resource constraints into force by branching
ovcr timc-fcasiblc extensions p' of the respective parent rclation p. Each re-
lation p' defines a collection of prcccdcncc constraints that break up some
forbiddcn active set A(S, t) belonging to a minimizer S of f on search space
P = S T (p) . Thc branching process is continued until either S T (p) = a or thc
minimizer S of f on S T (p) is fcasible. The latter condition is neccssarily sat-
isfied as soon as relation p is feasible. Notc, however, that schedule S may be
feasible even before p has been extcndcd to a feasible relation. When dealing
with regular objectivc functions, the ordinary prcccdcncc constraints given by
relations p may bc rcplaced by disjunctive precedence constraints (cf. Subsec-
tions 1.2.3 and 1.3.3). Since a disjunctive precedence constraint corresponds
to the disjunction of scvcral ordinary prcccdcnce constraints, branching is
then performed over sets of rclations and conscqucntly, thc scarch spaces 'P
on which f is to be minimized represent unions of relation polytopes.

From now on we assumc that the projcct under consideration compriscs
renewable and cumulative resources, where the renewable resources are used
by real activities i E V a and the cumulativc resources are depleted and re-
plenishcd by events i E v". Accordingly, for given schedule S the active sets

66 3. Relaxation-Based A1,qorithms

at times t contain both real activities and evcnts, and resourcc-feasible sched-
ules satisfy both the renewable-resource constraints (1.7) and the cumulative-
resource constraints (1.20). The set of all feasible scliedules is now S =

ST n Sn n Sc. As a straightforward extension of the definitions from Sub-
sections 2.1.1 and 2.1.2, we say that a relation p zn set V is time-feasiblc
if ST(p) # Q) and is feasible if 0 # ST(p) C S . It is easily seen that first,
relation p is again time-feasiblc prcciscly if relation nctwork N(p) docs not
contain any cyclc of positive length and that second, a time-feasible relation p
is fcasiblc exactly if both induced sub-relations pn (Va x Va) arid pn (Ve x Ve)
arc feasible in the sense of Definitions 2.3 and 2.17. As a consequence of the
latter statement, tlie feasibility of a time-feasible relation p in sct V can bc
verified by sequentially applying thc nctwork flow tcchniqucs discussed in
Subsections 2.1.1 and 2.1.2 to the respective sub-relations.

The resource-constrazned project schedulzng problem to be dealt with rcads
as follows:

Minirnizc f (S)
subject to S E ST n SR n Sc

where f is some regular or convcxifiablc objcctivc function. In Section 3.1
wc treat the case of regular objective functions. Scction 3.2 is devoted to
convexifiable objective functions.

3.1 Regular Objective Functions

We first dcvclop an cnumcration scherric bascd on the conccpt of disjunctive
prcccdence constraints that either generates a set of candidatc schedules con-
taining an optimal schedule or proves that there is no feasible schedule for tlie
project undcr consideration. We are then concerned with thc relaxation to be
solved at each cnumcration nodc. Thc latter problem amounts to minimizing
a regular objective function subject to temporal and disjunctive precedence
constraints. Next, we discuss thc extcnsion of the enumcration scheme to a
branch-and-bound algorithm and review alternative solution procedurcs for
rcsource-constrained project scheduling with regular objective functions.

3.1.1 Enumeration Scheme

In this subsection we are conccrncd with an criurneration schcmc for prob-
leni (P) with regular objective function f which forms the basis of branch-and-
bound procedures by Schwindt (1 9 9 8 ~) and Ncumann and Schwindt (2002)
for solving the project duration problcm with renewable or cumulative re-
sources, rcspcctively. Consider an optimal solution S to the tinie-constrained
projcct scheduling problem (1.2) with a regular objective function f , e.g.,
S = ES = miriST. If S satisfics thc renewable-resource constraints (1.7) and

3.1. Regular Objective Functions 67

thc cumulative-resource constraints (1.20), S is an optimal schcdulc. Other-
wise, there is some point in time t E [O , z] such that F := A(S, t) n Va or
F := A(S, t) n Ve represents a forbidden set. In the former case, the joint
requircmcnts by real activities i E F exceed the capacity of somc rcncwablc
resource k E R P , and in thc lattcr case, thc dcplctions and replenishments
by events i E F create a surplus or a shortage in some cumulative resourcc
k E RY. Forbidden set F can be broken up by introducing a disjunctivc prccc-
dcncc constraint (see Subsections 1.2.3 and 1.3.3)

min S . > min(Si + pi)
Z E A j E B ' - .

between somc appropriate sct A and a minimal dclaying alternative B, where
by definition p, = 0 for i 6 VC. If resource k is renewablc, wc choose A := F \ B .
Othcrwisc, we put A := Vz- \ F if F is a k-surplus set and A := v{+ \ F if
F is a k-shortage set. Let

P(A, B) := U {{i} x B}
i E A

denote the set of irrcflexivc relations {i} x B with i E A, which each give
rise to the (ordinary) preccdcncc constraints between activity i and all ac-
tivities j E B. Introducing disjunctive precedence constraint (3.1) refines the
resource relaxation by restricting the initial search space P = ST to the sct
of all schedules S contained in thc union of rclation polytopes ST(p) with

P E P(A, B).
After the selection of a minimal delaying alternative B, we minimize f on

thc restricted search space. Checking the resource-feasibility of the resulting
minimizer, rcfining the relaxation by disjunctive preccdcnce constraints, and
re-optimizing f on the rcstrictcd search spacc is performed until either the
search space has bccomc void or thc resulting minimizer S of f is resource-
fcasiblc. The disjunctive precedence constraints are reprcsentcd as a collec-
tion P of relations p whose relation polytopes ST(p) covcr the scarch space.
In each iteration, when adding a disjunctive precedence constraint of typc (3.1)
we put P := P @ P(A, B) whcrc P = (0) at the root node and

As we shall see in Subsection 3.1.2, each of the nonempty search spaccs P =

uPEpST(p) generated in this way possesses a unique minimal point, which
represents a minimizer S of f on sct P.

We now consider the enumeration schemc in more detail. The correspond-
ing procedure is given by Algorithm 3.1. Lct Q dcnotc a list of rclation scts P
in set V and let C designate the sct of candidate schcdules generated. Starting
with Q = (((3)) and C = 0, at cach iteration we remove somc rclation sct P
froin Q and solve the relaxation by either computing the minimal point S
of search space P = uPEPST(p) or showing that P = 0. In the latter case,

68 3. Relaxation-Based Algorithms

we writc S = S" := (m,. . . , cm). For S < S", we procccd as follows. If
schedule S is resource-feasiblc, wc havc found a candidate schedule and put
C := C u {S). Otherwise, there is a start time t = S, of somc activity i E V
such that active set A(S, t) includes a forbidden set of real activities or a
forbidden set of events. In the former case, we compute the set B all minimal
delaying alternatives B for F := A(S, t) n V" by using Algorithm 1.4. Other-
wise, F := A(S, t) n Ve is a k-surplus or a k-shortage set for some cuniulative
resource k E R Y , and calling Algorithm 1.6 provides the set B of all rnini-
ma1 dclaying alternatives for F and k. For each minimal delaying alternativc
B E B wc then introduce disjurictive precedence constraint (3.1) betwccn thc
corresponding set A and set B by setting P' := P @I P(A, B) and adding thc
expanded relation set P' on list Q. Wc rcturn to the (refined) relaxation and
reitcratc thcsc steps until all relation sets P in list Q havc bcen investigated,
i.e., until Q = 8. Finally, wc rcturn thc sct C of all candidate schedules found.

Altrorithm 3.1. Enumeration scheme for regular obiective functions

Input: A project.
Output: Set C of candidate schedules.

initialize list of relation sets Q := ((0)) and set of candidate schedules C := 0;
repeat

delete some relation set P from list Q;
determine schedule S = min(UpEpS~(p));
if S < S" then (*search space is nonempty *)

if S is resource-feasible then C := C U {S); (*candidate schedule found *)
else (* introduce disjunctive precedence constraints *)

determine time t such that resource constraints (1.7) or (1.20) are violated
for some k E RP U R Y ;
if k E RP then

set F := A(S, t) n V";
compute set B of all minimal delaying alternatives for F;
(* Algorithm 1.4 *)

else
set F := A(S, t) n Vc;
compute set B of all minimal delaying alternatives for F and k;
(*Algorithm 1.6 *)

for all B E B do
if k E R P then set A := F \ B; elsif B C v;+ then set A := Vc

-

\ F;
else set A := v,"' \ F;
set P' := P @ P(A, B) and add P' on list Q;

until Q = 0;
return C;

Thc following proposition establishes thc corrcctncss of thc cnumeration
scheme from Algorithm 3.1.

3.1. Regular Objective Functions 69

Proposi t ion 3.1 (Neumann e t al. 2003b, Sect. 2.5). Let C be the set of
candidate schedules generated by Algorithm 3.1 and let O S denote the set of
all optimal schedules.

(a) Algorithm 3.1 i s finite.
(b) Algorithm 3.1 i s complete, i.e., C n U S = 0 if and only if S = 0.
(c) All schedules generated by Algorithm 3.1 are quasiactive, i.e., C C QAS.

Proof.

(a) At cach itcratiori a relation set P is removed from list Q and a finite num-
ber of expanded relation sets PI are added to Q. For each p E P , sets P I

contain a relation p' > p cach. Sincc thc cardinality of any irreflexive re-
lation in sct V is bounded from above by (n + l) (n + 2), this implics that
the number of iterations performed by Algorithm 3.1 is finite.

(b) Clearly, the scarch spacc P = ST(@) = ST associatcd with thc initial
relation set P = (0) is a supcrsct of thc fcasiblc rcgion S and thus
S = ST(@) n S. Now let S bc the minimal point of somc search space P
cnumcratcd in the course of Algorithni 3.1. If S is not resource-feasible,
there is a time t such that active sct A(S, t) includcs a forbiddcn set F. Let
B bc thc sct of minimal delaying alternatives for F. Then Theorems 1.17
and 1.28 say that any resource-feasible schedule in set P satisfics one of
thc disjunctive precedence constraints (3.1) with B E B and appropriate
set A. Since in addition all enumerated schedules S minimize f on thc
respective search spaccs, thcrc is at least one optimal candidate schedule
S E C provided that S # 0. Convcrsely, all candidate schedules S E C
are feasible and the lower semicontinuity of f implies that O S = 0 only
if S = 0. Consequently, from C # 0 it follows that U S # 0.

(c) Each candidate schedule S E C is the minimal point of some relation
polytopc ST(p) and fcasible. Due to Q(S) 1) p and thus ST(Q(S)) C ST(p),
it follows from S E ST(B(S)) that S is thc minimal point of its schedule
polytope ST(Q(S)) as well, i.e., S E QAS. 0

Wc notice that as a direct consequence of the proof of Proposition 3.la,
thc maximum depth of the enumeration trec gencratcd by Algorithm 3.1 is
0 (n 2) . Moreover, the candidate schedules S E C are generally not active
but only quasiactive. Recall that already deciding on whether or not a given
feasible schcdulc is active constitutes an NP-hard problem.

3.1.2 Solving t h e Relaxations

In this subsection we arc concerned with the problem of minimizing a reg-
ular objective function f on a search space P defined by temporal con-
straints and disjunctive precedence constraints. We assume that thc dis-
junctive precedence constraints arc given by a collection of v relation sets
P(A1, B1), . . . , P(A,, B,) with P(A,, B,) = U a E ~ , , ({i) x BP) for ,u = 1 , . . . , V.

70 3. Relaxation-Based Algorithms

Proposition 3.2 (Neumann and Schwindt 2002). Let + be the operator
on pur t iuh~ ordered set (E::?, I) with 4(S) = (4 j (S)) jEV and

$, (S) = max (0, max (S, + Sij), rnax *nin (S, + pi)) (j E V).
(z , j)EE p=l, ..., I,: %€AlL

~ E B , ,

(a) If P # 0, set P has a u7~ique minimal point S f .
(b) + possesses a fixed point if and only zf P # 0. Mznzmal point S+ coincides

with the unique fixed point S of 4 with So = 0.
(c) If 'P # 0, S+ arises as the limit of the sequence {SX) with S1 = ES and

SXfl = $(SX) for X E W .
(d) If 'P f 0, there is a r;. < nd with $(SX) = SX = S+ for all X > K .

Proof.

Let S+ be the schedule given by ST := minsEp Sj for all j E V and
assume that P # 0. Wc show that Sf is the unique minimal point
of 'P. Sincc $ is isotonic arid Sf 5 S holds for all S E P, we have
$(Sf) < minsEp $(S). By definition of 4, set 'P can be represented as
P = {S E I S o = 0, S > $(S)). Now assume that S+ $! P . Then

-

there is an activity j t V such that Sjf < ,,!Ij(S+) 5 nlinsEp$,(S) <
rninsEp SJ = ST, which contradicts the assumption.

Sincc S+ is corr,,ponentwise minimal in set P = {S E I So = 0,
S > +(S)), we have Sf = $(S+), i.e., Sf is a fixed point of +. Due to the
connectivity of network N, a point S is a fixed point of 4 cxactly if thcrc
is an cu > 0 with S = S+ + a (1 , . . . , 1). Thus, S = S+ is thc unique fixed
point of II, with So = 0. Now assumc that P = 0. Then there is no point
S E such that So = 0 and S > +(S). Since the set of fixed points of
+ equals {S E I S = S+ + a (1 , . . . , I) for somc a > 0) and Sof = 0,
the latter statement implies that $J does not possess any fixed poirit.
Wc first show by induction on X that SX < S+ for all X E Pi. From P c ST
it follows that S1 = ES = (rninsEs, Sj)jEV I (minSEP Sj)jEV = S f .
Now assume that SX 5 Sf. Sincc opcrator + is isotonic, we have SXfl =

$(SX) < $(S+) 5 S+, where the last inequality results from Sf E P.
For S1 = ES it holds that Si = [m a ~ (~ , ~) ~ ~ (S , ! + Sij)lf for all j E V.
This provides S2 = $(S1) > S1, which proves thc scquence {s') to bc
componentwisc nondecreasing. Thus, the existence of an upper bound S+
irnplics the corivergerice of {s'). Then lirnx,, SX = lirnx,, SX+I =

limxi, 4(SX) = +(limxi, s'), arid the limit of {SX) represents a fixed
poirit of $. The last cquation is duc to the continuity of 41. From S: =
ESo = 0 < lirrix,, St 5 S: = 0 we obtain limx,, St = 0. Since
S = S+ is the unique fixed point S of 4 with So = 0, S+ coincidcs with
thc limit of sequence {SX).

3.1. Regular Objective Functions 71

(d) The asscrtion is immcdiate with the monotonicity of {S') and the prop-
erty that as long as SXfl # s', there is an activity h E V with

2 S,X + 1. 0

According to Proposition 3.2, minimizing a regular objectivc function f
on set P can be achieved by starting with S = ES and putting S := $(S)
until cithcr S = $(S) or > 2. In the latter case, P has been shown to be
empty. The number of iterates needed for reaching minimal point S+ can be
decreased by the following modifications. First, we may start thc procedure
with any time-feasible schedule S < S+. Second, each time the start time S, of
some activity J has been increased due to a disjunctive preccdence constraint,
wc may iinmcdiatcly restorc thc timc-feasibility of schedule S by putting
Sf, := max(SI,, S, + d J h) for a11 h E V. Thc resulting schedulc is time-feasible
precisely if 5 2, which is casily seen by adding arc (0 , ~) with weight
So, = S, to project network N arid applying Algorithm 1.3 for updating dis-
tance matrix D (see Remark 1.8). For p = 1,. . . , u let t, := minzEA,,(S, +pz)
be thc carlicst complction time of some activity i E A, with rcspcct to cur-
rent iterate S € ST and let d:: := m a x , ~ ~ ~ d , ~ ~ denote the "distance" between
set B,, and activity h E V. Then the start time of activity h E V has to be
increased precisely if Sh < 1, + d;. In this case, we set Sf, := t, + dk and
update the earliest completion times tx for all sets Ax containing activity h.
Algorithm 3.2 shows an implemcntation of this method as a label-correcting
procedure whcre queue Q contains all indices X = 1,. . . , u for which time tA
has to be updated.

Algorithm 3.2. Minimizing regular objective functions subject to temporal and
disjunctive precedence constraints

Input: A schedule S' E ST, distance matrix D, relation sets P(A,, B,)
(p = 1, . . . , v).

Output: Minimal schedule S 2 S f in set 'P = n;=l U l t ~ L , ST({i) x B,).

set S := S' and Q := (1 , . . . , v);
for all p = 1,. . . , u do

3: t, := n1iniEn,' (St + p,);
4: for all h E V do d; := max ,~o , d j h ;

repeat
dequeue index p from Q;

7: for all h E V with St, < tp + dk do
8: set Sh := t, + d::;

for all X = 1,. . . , v with h E Ax and tx < mingEAA (S, + p,) do
SO: set tx := mingtAA (S, + p,);

if X $ Q then enqueue X to Q;
until Q = 0 or > 2;
if Q = 0 then return S ; else return S";

72 3. Relaxation-Based Algorithms

Next we analyze the time conlplexity of Algorithm 3.2. To this end, we
assume that sets V and A, with p = 1 , . . . , u are stored as Fibonacci heaps
(see, e.g., Knuth 1998, Sect. 6.2) sorted respectively according to nondccreas-
ing start times Si or nondecreasing complction timcs Si +pi. The initialization
of earliest completion timcs t, and distances d:: on lines 3 and 4 takes 0 (un2)

-
time. Sincc thc algorithm stops as soon as > d, line 8 is executed at most
~ (n d) times. On the othcr hand, on linc 10 each point in timc t x cannot be
iricreascd more than ~ (u d) times, which implies that the repeat-loop is iter-
ated O(rnin[n, u]d) timcs. At each itcration, identifying activities h E V with
St, < t , + d; on linc 7 rcquircs O(1ogn) time and rearranging thc Fibonacci
hcaps V and A, after having incrcascd start timc Sh on line 8 takes O(u log n)
tirne. Thus, the time complexity of Algorithm 3.2 is 0 (un2 +min[n, u]du log n).

Alternative solution procedures with pseudo-polynomial tirne complexity
have been dcviscd by Zwick and Paterson (1996), Chauvet and Proth (1999),
and Schwicgclshohn and Thiele (1999). Mohring et al. (2004) provide a review
on papers dealing with applications of disjunctive prcccdcncc constraints that
arise in fields outside project schcduling, such as analyzing functional depen-
dencics among data in relational data bases (Ausiello et al. 1983), optimizing
the partial disassembly of products when rcmoving single componcnts (Gold-
wasscr and Motwani 1999), or computing optimal strategies for mean-payoff
games on dircctcd bipartite graphs (Zwick and Paterson 1996). In the latter
paper it is shown that thc problem to dccide whether the outcome of such
a gamc is positive is contained in NP n coNP. In addition, Mohring et al.
(2004) havc shown that this decision problem is polynomially equivalent to
minimizing a regular objective function subject to disjunctive temporal con-
straints where pi in inequality (1.11) is rcplaccd with an arbitrary time lag 6,, .
Dcspite this observation, however, no algorithm is available thus far for solv-
ing the latter scheduling problem in polynomial timc. For thc case where all
timc lags 6,, are nonnegative, Mohring et al. (2004) exhibit a label-setting
algorithm that runs in O(n + [ELTl IB,l][m + C;=l IA,LIIB,LI]) timc.

The enumeration schemc given by Algorithm 3.1 defines the branching
strategy of a branch-and-bound algorithm for problem (P) with regular ob-
jective function f . In this subscction wc prcsent the complete branch-and-
bound procedure. Bcsides the branching stratcgy, a branch-and-bound algo-
rithm for a minimization problem is charactcrized by the search strategy for
sclecting one of thc gcnerated enumeration nodes for further branching, con-
szster~cy tests, which are applied to restrict the search spaces of cnumcration
nodes, and lower bounds on the minimum objcctivc function value.

The search strategy of the branch-and-bound algorithm is as follows.
Wc always branch from onc of the child nodes u of the node u currently sc-
lected, i.e., wc pcrform a depth-first search. The dcpth-first stratcgy can be
implemented by simply choosing thc list Q of unexplored nodes u to be a

3.1. Regular Objective Functions 73

stack. The main advantages of depth-first search are that first, this strategy
minimizes the memory requiremcnts necessary for storing list Q and that sec-
ond, the number of branchings for reaching thc first leaf u of the cnumcration
tree (and thus often the timc for computing a first fcasiblc solution) is mini-
mum. Child nodes v are pushed onto stack Q according to nonincreasing lower
bounds. One drawback of the depth-first search strategy is that typically, two
enumeration nodes visited consecutively belong to similar relation sets, which
sharc a large number of common elements. As a consequence, it rnay take a
long time beforc any schedule located in a given part of the fcasiblc rcgion is
invcstigated, and thus the algorithm may spend much time in useless parts
of the enumeration tree. This shortcoming can bc avoidcd by partitioning the
enumeration tree into a number of subtrees, which are simultaneously tra-
versed according to a depth-first scarch strategy each (scattered search, cf.
Klein and Scholl 2000).

Basically, each of the consistency tests discussed in Subsections 1.2.4
and 1.3.4 can be applied at any enumeration node. Since disjunctivc precc-
dence constraints cannot be represented by a distance matrix D, thc tcsts
using distanccs dij between arbitrary nodes i , j E V (the disjunctivc ac-
tivities, energy precedence, and balance tests) refer to a modified distance
matrix Dl = (dij)i,jEv reflecting the temporal constraints Sj - Si > d:,
that arc implied by the original temporal constraints and the added dis-
junctive precedence constraints. For example, the modified distance matrix
can be chosen to be equal to the elementwise minimal matrix Dl with
dLA > max(dgll, minitA, m a x j ~ o , (dki + pi + d;,,)) for all g , h E V and all
p = 1, . . . , v which satisfies the triangle inequalities (1.6). For distances d&,
we may choose dbh = Sh (h E V), where S is the minimal point of search
space 'P computed by Algorithm 3.2.

The question which consistency test should actually be uscd at which node
has to bc invcstigated with care. The reason for this is that intuitively there
is a tradeoff between the efficiency (i.e., the computation time required) and
the effectiveness (i.c., thc dccrcasc in sizc of the search space) of a tcst. As
a rule, the deeper the enumeration node, the less time should be spent with
consistcncy tests. In any case, the seardl space reduction algorithm (cf. Algo-
rithm 1.5) should be implemented in the form of a label-correcting procedure
iterating thc hypothetical temporal constraints whose validity may be affected
by the last constraint added (either an imposed disjunctive precedence con-
straint or a temporal constraint arising from applying a consistency test).
In branch-and-bound algorithms for the project duration problem with re-
newable resource constraints, Dc Rcyck and Herroclcn (1998~) and Schwindt
(1998~) have applied the disjunctivc activities tcst to two-clerncnt forbidden
sets (De Reyck and Herroelen used thc tcst as a preprocessing technique at
the root nodc). Dorndorf et al. (2000~) report on favorable results using the
workload-based disjunctive activities tcst and thc unit-intcrval capacity test
in a time-orientcd branch-and-bound procedure for the same problem (the
latter algorithm is briefly sketched in Subsection 3.1.4). Dorndorf et al. have

74 3. Relaxation-Based Algorzthn~s

also experimented with the activity interval and general interval consistcncy
tests, but on their testbed (projects with 100 or 500 activities) thc additional
search space reduction has been, on the average, outweighed by tlie incrcasc in
computation time. Finally, Laboric (2003) has been able to improve upon thc
results obtained by Neuniann and Schwindt (2002) for the project duration
problem with cumulative resources by using the balancc test.

Next, wc turn to lower bounds on the minimum objective function value.
Let S be the minimal point of scarch space 'P under study (possibly reduced by
applying consistcncy tests). Obviously, lbo = f (S) represents a lowcr bound
on thc objcctivc function valuc inins,Epns f (S f) of a best feasible schedule
in P. Within a branch-and-bound algorithm for tlie project duration problen~
with renewable resources, Scliwiridt (1998a) has uscd two further lower bounds
lbl and lbz, respcctivcly being based on disjunctive activities and energetic
reasoning. We first deal with lowcr bourid lbl (scc also Klein and Scholl 1998).
Let ;i' E Z>" with Sn+l < df < d denotc somc hypothetical upper bound on
thc projectduration. Clearly, thc latcst start time LSi = -dio of activity i is,
under the assumption of a projcct dcadline d', less than or equal to ;i' - di,,n+l,
and the earliest completion time Si +pi of activity i is independent of d'. Now
let {i, j) be a forbidden set such that d' - dj,,,+l < Si +pi and ;i' - di,n+l <
Sj + p j Then activities i and j must overlap in timc, which is impossible due
to their excessive joint resource requirements. Consequently, d' + 1 is a lowcr
bound on the shortest project duration of all schcdulcs in the search spacc.
Moreover, 2' must be increased by niin(Si + p, + dj,,,+l, Sj + p j + di,7L+I)
units of timc to avoid the above contradiction. Thus, instead of performing -
a binary scarch in set [S,n+l, dl n Z, wc may directly compute thc smallest
deadline 2' = lbl which cannot bc disprovcd as

For given two-element forbidden sets { i , ~) , calculating smallcst deadline 2'
requires (?(n2) time. By applying the profile test from Subscction 1.3.4 to the
projcct termination cvent n+ 1, Neumann and Schwindt (2002) have obtained
a s indar lower bound on the minimum project duration of projccts witli
cumulative rcsourccs. Thc algorithm itcratcs hypothetical upper bounds d',
which may be refuted based on lower arid upper approximations to the loading
profiles.

Now rccall the concept of lowcr bound wk(a, b) on tlie workload to bc
processed on renewable resource k E R P in intcrval [a, b[(see equations (1.13)
and (1.14)). By replacing the carliest completion tinie EC, = ES, + p, in
(1.13) witli S, + p,, we obtain a corrcsponding lowcr bound referring to the
search space P rather than to set ST. In particular, wk(S,,;i) reprcsents a
lower bound on the workload for rcsource k that must be processed aftcr the
carlicst start time S, of activity t , which takcs a t lcast [wk(S,,d)/Rkl units
of timc. By taking thc maximum with rcspcct to all real activities i E V a and
all renewable resources k E R\ we obtain lower bound

3.1. Regular Objective Functions 75

lbz = max(Si + rnax
~ k (S i , 2)

,Eva xtn. 1 Ri 1)
on the minimum projcct duration. Computing value lb2 can be done in
O(JRPln log n) time.

We briefly touch upon further, more timc-cxpensive lower bounds on thc
minimurn duration of projects with renewable resourccs, which can be found in
Heilrnann and Schwindt (1997), Brucker and Knust (2003), and Mohring et al.
(2003) arid will be used for the pcrformancc analysis of exact and heuristic
methods for the project duration problem in Subsection 3.1.4. The latter two
lower bounds are also described in more detail in Neurriann et al. (2003b),
Subsect. 2.5.8.

Heilnlanri and Schwindt (1997) discuss scvcral lower bounds based on
disjunctive activities, energetic reasoning, and a relaxation of thc resourcc-
constrained project scheduling problem (1.8) leading to a prccmptivc one-
machine problem with release dates dg" and quarantinc times dyAn+l (z E V").

Similarly to lower bound lbl, the lower bound on thc minimum project
duration devised by Bruckcr and Knust (2003) is based on falsifying hypo-
thetical project deadlines 2. For a givcn value of 2, the procedure of testing
the consistency of deadline d/ constructs a linear program and tries to show
that it is unsolvable. At first, several consistcncy tests are applied in ordcr
to tighten the time windows [S,, LS,] of individual activitics i E V" (recall
that minimal point S coincides with the earliest schedule in sct P) . For each
pair (t, t') of consecutive earliest start or latest complction timcs of activi-
ties i E V a , the set of all tentative active sets A for intcrval [t , t l [is then
computed, where S, < t' and LC, > t for all i E A and d,, < p, for all
i, j E A. For each set A, a continuous decision variablc y~ > 0 is introduced
providing the time during which A is in progrcss in intcrval [t, t'[(i.e., during
which precisely the activities i E A overlap in time). The project duration
is then minimized subject to the constraints that first, each real activity i is
carried out for p, units of time in the different scts A and second, the total
execution time of all sets A belonging to somc pair (t, t') is lcss than or equal
to interval length t' - t. The latter problem can be formulated as a linear
program in decision variables y~ and corresponds to the relaxation of prob-
lem (1.8) wherc the tcmporal constraints arc replaced with the weaker rclcase
dates dgzn = S, and deadlines dgax = LS,. Moreover, activities arc allowed
to be interrupted during their execution. Since the number of tentative activc
sets A grows exponentially in n, it is expedient to solve the linear program by
column-generatzon technzques (see, e.g., Goldfarb arid Todd 1989, Sect. 2.6).
Thc basic idea is to consider only a restricted working sct of decision vari-
ables that are generated when needed. Each time the linear program with thc
currcnt working set of decision variables has been solvcd to optimality, ncw
decision variables arc added to the working set or it is shown that the cur-
rent basic solution is optimal. For finding an improving decision variable y~

76 3. Relaxution-Based Algorithms

to bc added to the working set, Bruckcr arid Knust use a branch-and-bound
algorithm enumerating binary incidcncc vcctors for sets A.

Mohring et al. (2003) usc a formulation of problem (1.8) as a binary lincar
program with time-indexed binary variables xzt, which has been proposcd by
Pritsker et al. (1969) for thc first timc. Dccision variable xzt equals one if ac-
tivity z is startcd at timc t and zcro, otherwise. For (approxirnatively) solving
thc continuous relaxation of thc lattcr binary program, Mohring et al. apply a
standard subgradient method (cf. Held et al. 1974) to a Lagrangean relaxation
of the latter linear program, which substitutes the resource constraints into a
linear penalty function. For given multipliers, thc Lagrangean relaxation can
bc solved cfficiently by transforming the problcrn into a minimum-cut problcm
in a cyclic network with uppcr alc capacities, where each nodc stands for one
decision variable xzt (thc time complexity of this approach is studicd in more
dctail in Mohring ct al. 2001). Thc main advantage of this approach is that
it can bc used for each objcctivc function f which can be written in thc form
CztV wZtxZt, where wzt E Z and variables xzt are used in the above mcaning.
In addition, tlie approach can straightforwardly bc gencralizcd to the case of
cuniulative resources (see Selle 1999).

3.1.4 Additional Notes and References

Algorithrn 3.1 combines tlie enumeration schemes of the branch-and-bound
algoritlinis by Schwindt (1998a) and Neumann and Schwindt (2002) for the
projcct duration problems with rcnewablc-rcsource and cumulative-resource
constraints, rcspectively (see also Schwindt 1999). In this subsection we bricfly
present alternative solution procedures that have been proposed in literature
and present the results of an experimental performance analysis of the algo-
rithms. Wc only consider algorithms coping with general temporal constraints.
For the special case where instead of minimum and rnaxinlum time lags be-
tween activitics preccdcnce constraints are prcscribed, we refer to the survey
papers by Herroeleri et al. (1998), Brucker et al. (1999), Hartmann and Kolisch
(2000), and Kolisch and Padman (2001) and the literature cited thcrcin.

We first deal with exact procedures for tlie project duration problem
with renewable resources. By using ordinary precedence constraints in-
stead of disjunctive precedence constraints for breaking up forbidden active
sets, wc obtain the enumeration scheme of a branch-and-bound algorithm that
has been devised by De Reyck arid Herroelen (1998~). Accordingly, tlie enu-
meration nodes correspond to time-feasible relations p which arise from the
union of minimal delaying modes {i) x B. This enumeration scheme will bc
discussed in more detail in Subsection 3.2.1.

The earliest branch-and-bound algorithm for the projcct duration problem
is due to Bartusch et al. (1988). Their approach differs from thc algorithm
by De Reyck and Herroelen in the forbidden sets considered in the coursc of
tlie algorithm. The forbidden sets F broken up in the latter algorithm (and,
likewise, in Algorithm 3.1) arc always active sets A(S, t) belonging to the

3.1. Regular Objective Functions 77

minimal point S of the search space ST(p). If there is no forbidden active
set A(S, t) for S at any time t > 0, schedule S is feasible, and no furthcr
pairs (i , j) are added to p. As wc have alrcady noticed in Subsection 3.1.1,
the feasibility of S does not necessarily imply the feasibility of relation p.
The algorithm of Bartusch et al. first computes all minimal forbiddcn scts
F E F for which the temporal constraints allow the simultaneous processing
of all activities i E F. Similarly to the enumeration schemc of thc algorithm
by De Reyck and Herroelen, cnumeration nodes correspond to relations p
in set Va. The child nodes p', however, now arise from branching, for given
minimal forbidden set F, over all pairs (i, j) of activities i , j E F such that
relation p' := p ~ { (i , j)) breaks up F. Leaves of the enunieration tree are either
feasible relations p or relations p for which no further minimal forbidden set
can bc broken up by any time-feasible relation p' > p.

By substituting the disjunctive prcccdcnce constraints (3.1) into release
datcs

dgn = min(S, + p,) (j E B)
, € A

(3.2)

whcrc the right-hand side is the smallest completion time of somc activity
i E A with respect to the schedule S undcr considcration, onc obtains thc
enumcration scheme of the branch-and-bound algorithm by Fest et al. (1999).
The main advantagc of this approach is that given distance matrix D, min-
imizcrs S of the project duration on the search space can be calculated in
U(IB1n) time. Furthermore, thcrc exists a vcry simple and effective domi-
nance criterion, which enables fathoming nodes by comparing corresponding
release datc vcctors. The drawback of the release-date based enumeration
scheme is that constraints (3.2) only temporarily establish a precedcncc rc-
lationship between sets A and B. Sincc in contrast to the case of disjunctive
precedence constraints, thc right-hand side of (3.2) is a constant, thc resourcc
conflict caused by forbiddcn sct F = A U B is not definitely settled and thus
onc and the same resource conflict may be resolved repeatcdly along a path
from the root to some leaf of the enunieration tree. Computational experience,
however, indicates that this situation can often be avoided by discarding cnu-
meration nodes which due to unnecessary idle times cannot lead to quasiactive
schedules (total-idle-time dominance rule, cf. Fest et al. 1999).

All algorithms mentioned thus far are based on breaking up forbidden sets.
Thc constraint propagation algorithm by Dorndorf ct al. (2000~) branchcs over
the binary decision whether to schcdulc a givcn activity i E Va at its (currcnt)
earliest possible start timc ES, or delaying i by introducing a release date
db:"'" 2 ES, + 1. The large size of the corrcsponding complete enumeration
tree is significantly reduccd by applying the disjunctive activities and unit-
interval capacity consistency tests and exploiting specific properties of active
schcdules.

Wc proceed with heuristic proccdurcs for the project duration problem
with renewable resources. Franck (1999), Ch. 4, has proposcd thc following
przorzty-rule method. Prclirninary variants of this algorithm have been dc-

78 3. Relaxation-Based Algorzthms

viscd by Neumann and Zhan (1995) and Brinkmann and Neumann (1996). A
streamlined version of Franck's algorithm is described in Franck et al. (2001 b).
At first, a preprocessing step is pcrformed by applying the disjunctive activ-
ities consistency test to two-clcmcnt forbiddcn sets. To construct a feasible
schedule, a serial schedule-generation scheme is used (cf. Kolisch 1996), which
in each iteration schedules one eligible activity j E Vn by fixing its start
time S,. An activity j is called eligible if all of its prcdcccssors i E Pred4(j)
with respect to strict ordcr + in set V a havc bccn schcdulcd, wliere i < j if (1)
dij > 0 or (2) di, = 0 and d,j i < 0. From the set of eligible activities, the activ-
ity to be scheduled next is chosen according to a priority rule. Let C denote the
set of all activities already schcdulcd. Thc activity j selectcd is started at the
earliest point in time t E [ESJ, LSj], where ES, = max[doj, maxiEc(Si + d,j)]
and LSj = min-doj , miniEc (Si - dji)], such that in intcrval [t, t +pj [the joint
resource requircments by j arid the activities i E C do not cxcced thc rcsource
capacities. Due to the presence of maximum time lags, it may happen that for
a sclccted activity j there is no such point in time t . Let t' := miniEc(Si - dji)
then denote the latcst start timc of j due to the (induced) maximum time lags
betwccn schcduled activities i E C arid activity j . To rcsolvc thc deadlock, an
unscheduling step is performed, which cancels the start times of all schcdulcd
activities i E C with Si > t' and increases the earliest start time ESi of all
scheduled activities i E C with Si = t' by one unit of timc. The procedure
is terminatcd if a prescribed maximum number of unscheduling stcps liavc
been performed or if all activities j E V" have been schedulcd. Thc numbcr
of required unschcduling steps can be markedly dccreased on thc avcragc if
activities of strong componcnts in project network N arc schedulcd directly
one after another, where N does not contain backward arc (n + 1,0) (recall
that when miriiniizirig the project duration, we may delete the deadline 2 on
the project termination).

Bascd on this priority-rule method, Franck (1999), Ch. 6, has also devel-
oped a scllcdulc-improvement procedure of type parallel genetic algorithm (scc
also Franck et al. 20010), which is an adaptation of a genetic algorithm by
Hartmarm (1998) for the project duration problem without maximum time
lags. The genetic algorithm works on several subpopulations of equal size,
where cach island evolves separately until after a given number of iterations,
some individuals migrate from one subpopulation to another one. The indi-
viduals are represented by feasible activity lists (i.e., complete strict orders G

in set Vn extending strict ordcr +), which are transformed into schedules by
applying the serial schcdule-generation sclierrie with strict order + substituted
into Q. Thc initial subpopulations are created by randomly biasing priority
rules and transforming the resulting priority values ~ (i) of activitics i in an
activity list G by putting i G j if (1) i + j or (2) j 74 i and ~ (i) < ~ (j) . At
each itcration, two individuals are selected for crossovcr in each subpopulation
according to a double roulet te-wheel selection. By applying a one-point arid a
two-point crossover operation to those two individuals two new activity lists
are generated. With a certain probability, the new activity lists are then sub-

3.1. Regular Objective Functions 79

jectcd to mutation by interchanging the positions of two adjacent activities in
thc list. Subsequently, the two activity lists arc dccodcd into schedulcs using
the serial schedule-generation scheme. If in the course of the schedule gen-
eration a maxinium number of unscheduling steps has been performcd, the
violation of maximum time lags is allowed, which means that tlie resulting
schedulc is not time-feasible. Based on the resulting schedules, the fitness of
the activity lists is calculated as the sum of the project duration and a penalty
term for time-infeasibility of the schedule. Eventually, the worst two individu-
als in the subpopulation are replaced with the two new activity lists, provided
that the new activity lists have a better fitness. These steps are iterated until
one of fivc stop criteria is met: all individuals have tlie same fitness, a lower
bound on the shortest project duration has been attained, a prescribed num-
ber of schedules have been evaluated, a feasible schedule has not been found
within a given number of iterations, or thc best fcasiblc schcdulc found has
not been irnproved within a givcn number of iterations.

A variant of the enumeration schcrne of Dc Reyck and Hcrroelcn (1998~)
has been uscd by Cesta et al. (2002) for a multi-pass heuristic, where relation
{i) x B is replaced with a pair (i, j) such that thc addition of (i, j) to relation p
breaks up some selected niinirrial forbidden set F. Set F is chosen from a
given number of samplcd minimal forbidden sets F' E .F with F' C A(S, t)
for some t > 0. F is onc of thc sampled minimal forbidden scts with minimum
"temporal flexibility" in tcrms of total slack times T F h with h E F, and
pair (2 , j) is chosen such that the resulting temporal flexibility for set F is
maxirrium. The addition of pairs (i, j) to p is repcated until ST(p) = I? or
minimal point S = minST(p) is a feasiblc schcdulc. Within thc multi-pass
procedure, the temporal flexibility used for sclccting pairs (i, j) is randomly
biascd, and thus in general several different fcasiblc schedules are gcnerated.

We now turn to the results of an cxpcrimcntal pcrformance analysis. All
of the above algorithms for the project duration problem with renewable re-
sources except the branch-and-bound algorithm of Bartusch ct al. (1988) have
been tested on a tcst sct consisting of 1080 problem instances with 100 real
activitics and 5 renewable resources each. The instances have been generated
randomly by using the project generator ProGen/max (see Schwindt 19986
and Kolisch et al. 1999). The construction of projects can be influenced by
means of control parameters for thc problem sizc, shape of the project net-
work, activity durations, time lags, and resource constraints. From the 1080
instances, 1059 possess a feasible solution. For 785 instances, an optimal so-
lution is known.

Table 3.1 shows, in historical order, the results obtained by the differ-
ent proccdures, where the computation timcs rcfcr to a Pentiurn personal
computer with 200 MHz clock pulse (to account for different hardware, we
havc linearly scaled the computation times for De Reyck and Herroelen's
arid Franck's algorithms according to the corresponding clock pulse ratio).
Thc results for the branch-and-bound procedure of De Reyck and Herroe-
len (1998a) are given as quotcd by Dorndorf et al. (2000~). "Schwindt (1998~)

80 3. Relaxation-Based A1,qorithrns

Table 3.1. Performance of algorithms for the project duration problem with renew-
able resources

Algorithm t c p u Popt Pins Pnopt Punk Alb

De Reyck and Herroelen (1998~) 3 s 54.8 % 1.4 % 42.5 % 1.1 %
30s 56.4% 1.4% 41.1% 1.1% n.a.

Schwindt (1998~) FBS 28.1 s 59.4% 1.9 % 38.7% 0.0% 6.4%

Fest et al. (1999)

Franck (1999) GA 12.1s 60.1 % 1.9% 38.0% 0.0% 5.3%

Dorndorf et al. (2000~) 3 s 66.2% 1.9% 31.6% 0.3% 5.2 %
30s 70.4% 1.9% 27.7% 0.0% 4.8%

100s 71.7% 1.9% 26.4% 0.0% 4.6%

Cesta et al. (2002) 100s 63.2% 1.9 % 34.9 % 0.0 % 7.3 %

BB" and "Schwindt (1998a) FBS" dcsignate the branch-and-bound algorithm
of Schwindt (1998~) and its truncation to a filtcred bean1 search hcuristic (see
Franck et al. 2001b). "Franck (1999) PR" and "Franck (1999) GA" stand for
the priority-rule method and genetic algorithm by Franck (1999). The priority-
rulc method is performed with 14 diffcrcnt priority rules and the bcst schedule
is returned. For the branch-and-bound proccdurcs, tCp, denotes an imposed
time limit after which the enumeration is stopped. For the heuristics, t,,, is
the mean computation time. p,,t, p ,,,, pnOpt, and punk denote thc pcrccntages
of instances for which respectively an optimal schedule is found and optimality
is proven, insolvability is shown, a feasible schedule is found whose optimality
cannot be shown, or the solvability status remains unknown. In addition, we
providc the mean pcrccntage deviation Alb of the project duration found from
a lowcr bound lb on the minimum projcct duration, which has been calculated
using tecllniqucs dcscribed in Heilmann and Schwindt (1997), the lower bound
of Mohring et al. (2003) based on Lagrangean relaxation, and thc lowcr bound
of Brucker and Knust (2003) using column generation (scc Subsection 3.1.3).
For the algorithm of De Rcyck and Hcrroelen (1998a), the published mean
deviations from lower bound are based on values different from lb and arc
thus not listed. The mean refers to the instanccs which havc been solved to
feasibility by the respective algorithm. For the hcuristic methods, we say that
optimality is proven if the project duration obtained cquals lower bound 10

3.1. Regular Objective Functions 8 1

and insolvability is shown if the consistency tests included reduce the search
space to void.

As far as the cxact algorithms are conccrned, the results suggest that
the most recent of the branch-and-bound procedures (Dorndorf et al. 2000c)
is also the algorithm which performs best with respect to all five evaluation
criteria. The good performance of the constraint propagation algorithm is pri-
marily due to a clever scarch strategy and the effectiveness of thc consistcncy
tcsts, which are applied at cvcry cnurneration node. In particular, the mean
deviation Alb from lower bound is significantly smaller than for all remaining
algorithms and for almost thrcc quartcrs of the instances, the cnumeration
is completed within a timc limit of 100 seconds. It is worth mentioning that
all algorithms compared, except De Reyck and Herroelen's branch-and-bound
proccdurc, are ablc to identify all insolvable instanccs and to find a feasible
schedule for cach solvablc instancc. The comparison of the results obtaincd
when varying thc time limit of the branch-and-bound procedurcs, howcvcr,
indicates that solving all of the remaining open instances would probably
require a prohibitively large computation time.

The priority-rule method provides fcasiblc schedules with an acceptable
deviation from lower bound within a very short amount of time. If more
computation time is available, the genetic algorithm may be uscd to improve
the initial schcdule calculated by thc priority-rule method. Thc comparison
with Dorndorf ct al.'s algorithm stoppcd after three seconds, however, shows
that tllc latter algorithm also outpcrforms the heuristics. In addition, the
data for the filtered beam search version of the branch-and-bound procedure
of Schwindt (1998a) suggest that even better results may be obtaincd by a
truncatcd version of Dorndorf ct al.'s algorithm.

We proceed with the project duration problem with cumulative re-
sources. To the best of our knowledge, there are only two algorithms for
solving this problem: the branch-and-bound procedure dcviscd by Ncurnann
and Schwindt (2002), which is bascd on thc cnumeration scheme given by
Algorithm 3.1, and a branch-and-bound algorithm that has been proposed by
Laborie (2003).

The enumeration scheme of the latter procedure picks two distinct cvents
i, j with di j < 0 and dji < 0 in each iteration and branches ovcr the binary
decision whether or not i occurs before j (i.e., Si 5 Sj - 1 or Si 2 Sj). The

sclcction of cvents i , j is based on the upper and lower bounds ~ ; ; < (h) , ~ : (h) ,

T z (h) , &(h) on the inventory levels in resources k E 727 just before and at
the occurrencc, rcspectivcly, of evcnts 11 E Ve (sce Subscction 1.3.4). At each
node of the enumeration tree, the balance test is used to reduce the time
windows [ESh, LS,,] of evcnts h E Ve.

Table 3.2 shows the results of an experimental performance analysis of
Ncurnann and Schwindt's and Laborie's algorithms. The test set has again
bccn generated by ProGenlrnax and contains 360 instances with 10, 20, 50,
or 100 cvents and 5 cumulative resources cach. The computations havc bccn

82 3. Relaxntion-Based Algorithrr~s

pcrformed on a Pentium personal computer with 200 MHz clock pulse. For
cach instance we have imposed a time limit of 100 seconds. The mean devia-
tion from lower bound &, is bascd on thc lower bound lbl that is obtaincd
by applying the profile test to the project termination event n + 1 (see Sub-
section 3.1.3).

Table 3.2. Performance of algorithms for the project duration problem with cumu-
lative resources

Algorithm 7~ popt P Z I L S pnopt punk &b

Neumann and Schwindt (2002) 10 66.7 % 33.3 % 0.0 % 0.0 % 0.3 %
20 48.9% 51.1 % 0.0% 0.0% 2.2 %
50 51.1% 45.6% 1.1% 2.2% 1.3%

100 55.6% 34.4% 7.8% 2.2% 1.2%

Laborie (2003) 50 53.3% 46.7% 0.0% 0.0% 1.5 %
100 63.4% 36.6 % 0.0% 0.0% 0.9 %

Wc first discuss tlie results obtained with the algorithni by Neumarm arid
Schwindt (2002). For all 180 instanccs with 10 and 20 cvcnts, the enumeration
is completed within the time limit. Evcn for thc projects with 100 events, 90 %
of the instances can be cithcr solvcd to optimality or provcd to be insolvable.
Pu t into perspective with the data displayed in Table 3.1, those results may in-
dicate that problems with cumulative-resource constraints are more tractable
than problerris with renewable resources. As far as the computation of feasible
schedules is concerned, the picture is different. There exist projects with 50
events for which aftcr 100 seconds neither a feasible schedule can be found nor
insolvability can be shown. With the branch-and-bound algorithm by Laborie
(2003), however, the twelve open instances with 50 or 100 activities can be
solved within less than 100 scconds (56 scconds on a HP 9000/785 worksta-
tion), which again confirms the benefit of efficient and effective consistency
tests. The results for thc projects with 10 or 20 activitics arc the sarnc as for
tlie algorithm by Neumann and Schwindt (2002).

3.2 Convexifiable Objective Functions

For convexifiable objective functions, time-constrained project scheduling with
disjunctive precedence constraints can no longer be performed efficiently, and
thus rcsource conflicts are settled by introducing ordinary prcccdcnce con-
straints. After the treatment of an cnumcration schcmc for gcncrating can-
didate schedules, wc discuss two alternative approaches to solving the relax-
ations: the primal approach, which will bc uscd to solvc thc timc-constrained
projcct scheduling problem at thc root nodc of the enurncration tree, and
the dual approach for adding precedence constraints between activities of the

3.2. Co~nvexzfiable Objective Functions 83

project. Whcrcas the primal steepest descent algorithm iterates over time-
feasible schcdulcs, the dual flattest ascent algorithm consecutivcly enforces
the precedence constraints. Both algorithms are used within a branch-and-
bound algorithm for minimizing convexifiable objcctivc functions. In addition,
we provide an ovcrvicw of altcrnative solution proccdures that have been de-
vised in litcraturc for specific convexifiable objective functions and discuss the
rcsults of an experimental performance analysis of the methods trcatcd.

3.2.1 Enumeration Scheme

Prccursors of the enunleration scheme to be discussed in this subsection
have bccn proposcd, independently, by Icmcli and Ercngiiq (1996) for the
nct prcscnt value problem with renewable resources and by De Reyck and
Herroelen (1998~) for thc project duration problem with renewable resources.
Icmcli and Erengu~ (1996) have considered the case of precedcncc constraints
among activities instead of gcncral temporal constraints. The enumeration
scheme has arisen from the combination of the relaxation-based approach by
Bcll and Park (1990) and the concept of minimal delaying alternatives intro-
duccd by Derneulerneester and Herroelen (1992). Later on, Schwindt (2000~)
has used thc cnumcration schcmc within a branch-and-bound algorithm for
the total earliness-tardiness cost problem with rcncwable resources. For solv-
ing the capital-rationed net present value problem, Schwindt (2000~) has ex-
panded thc cnumcration schcmc to copc with cumulative resources.

The algorithm mainly differs from the cnumcration scheme considered in
Subsection 3.1.1 in that forbidden active sets are broken up by ordinary in-
stead of disjunctive prcccdencc constraints. Hcncc, each enumeration node
is associated with a relation p rather than with a set P of rclations, and the
scarch spaccs P represent relation polytopes ST(p). Thc rclations p arise from
thc union of minimal delaying modes {i} x B , where B is a minimal delaying
alternative for somc forbiddcn sct F and i E A with A C V\ B being an appro-
priate set of activities to bc choscn depending on the type of the underlying
resource conflict. Accordingly, we obtain one enumeration node for each com-
bination of activity i E A and minimal delaying alternative B. The relaxation
to be solvcd a t an enumeration node belonging to rclation p consists in finding
a (local) minimizer of objective function f on search spacc ST(p). In contrast
to the case of regular objective functions, it can easily be verified whether
or not the scarch space bccomcs void when passing from p to a child node's
relation p' = pU ({i) x B) by checking the condition d$ +pi 5 0 for each j E B
(see Proposition 1.9). Updating thc distance matrix D(p) aftcr thc addition of
pairs (i, j) with j E B can be achieved in 0 (n2) time by using Algorithm 1.3
and observing that maxjEB (dgi + hij + djr,) = dgi + pi + maxjt- B djh for all
g, h E V .

The enumeration scheme is now as follows (cf. Algorithm 3.3). Q is a list
of relations in set V and C again denotes the set of candidate schedules to be
generated. At first, wc put thc cmpty rclation p = 0 on list Q and set C := 0.

84 3. Relaxation-Based Algo~ithms

We then check whether there is a cycle of positive length in project network N,
in which casc wc return the empty set of candidate schedules. At each iteration
we take some relation p from list Q and determine a minimizer S of f on
relation polytope ST(p). If schedule S is resource-feasible, we have found a
candidate schcdulc, which is added to set C. Otherwise, we scan S for a start
time t = Si of some activity i E V sllcli that active set A(S, t) includes a
forbidden set F and compute the corresponding set B of all minimal dclaying
alternatives. For each minimal delaying alternative B E B and each activity i
from the respective sct A wc obtain onc minimal dclaying mode { i) x B,
which is joined with rclation p and gives rise to the extension p' of p. If
relation polytope ST(pl) is nonernpty, p' is added to the list Q of unexplored
erlunleration nodcs. We then take the next relation p from list Q and proceed
in the same way until no more relations p remain in list Q and the set C of
all candidate schedules is returned.

Algorithm 3.3. Enumeration scherne for convexifiable obiective functions

Input: A project, convexifiable objective function f .
Output: Set C of candidate schedules.

initialize list of relations Q := (0) and set of candidate schedules C := 0;
if ST = 0 then return C; (* cycle of positive length in N *)
repeat

delete some relation p from list Q;
determine minimizer S of f on ST(^);
if S is resource-feasible then C := C U { S) ; (* candidate schedule found *)
else (* introduce ordinary precedence constraints *)

determine time t such that resource constraints (1.7) or (1.20) are violated
for some k E RP U RY;
if k E RP then

set F := A (S , t) n V " ;
compute set l? of all minimal delaying alternatives for F ;

else
set F := A(S, t) n V e ;
compute set B of all minimal delaying alternatives for F and k;

for all B E B do
if k E RP then set A := F \ B ; elsif B C V;' then set A := VF- \ F;
else set A := v,"' \ F;
for all i E A do

set p' := p U ({ i) x B);
if ST(p') # 0 then add p on list Q; (*search space is rlonempty *)

until Q = 8;
return C;

3.2. Convexifiable Objective Functions 85

3.2.2 Solving t h e Relaxations: The Pr ima l Approach

The relaxation to be solved at each nodc of the enumeration tree gcncrated by
Algorithm 3.3 corresponds to a time-oriented scheduling problem of type (1.2)
where ST is substituted into some relation polytopc ST(p) and f is a convex-
ifiable objective function. To simplify writing, we consider the relaxation at
the root nodc, where p = 0, i.e., thc resource relaxation of problem (P).

Recall that if objective function f : ST + R is convcxifiable, there exists a
C1-diffeom~r~hism cp : ST -+ X such that composite function I,!I : X + R with
+(x) = (f o cpP1)(x) for all x E X is convex and the image X = cp(ST) of ST
under cp is a convex set. The continuity of cp and the compactness of ST imply
that thc domain X of 4 is compact as well. If for given convexifiable objcctive
function f , a diffeomorphism cp satisfying the conditions of Definition 2.29 is
known, the relaxation can be solvcd by computing a minimizer x of 4 on X and
returning schedulc S = cp-'(z). The existence of such a minimizer x is easily
seen as follows. By dcfinition of +, the lowcr-lcvel set L$ of 4 for given a E R
cquals the image of lower-level set LL of f under cp, which is closed because
of the lower semicontinuity of f . Consequcntly, the continuity of cp provides
the closedness of any lower-level set L$ of 4, which means that I,!I is lower
semicontinuous as well. Since X is compact, 4 always assumcs its minimum
on X. A minimizer x of ?I, on X can be determined by the ellipsoid method,
whose time complexity is polynomial in the input length of function 4 and
set X. We stress, however, that the latter time complexity is not necessarily
polynomial in the input length of the original relaxation (1.2).

For two special cases, which cover most convcxifiable objective functions
occurring in practice, thc rclaxation can be solvcd more efficiently on thc
average. We first consider the case where f is piecewise affine, convex, and
sum-scparablc in the nodes i E V and the arcs (i, j) E E of project network N,
i.e., f can be written in the form

where functions fi : [ES,, LSi] 4 R (i E V) and fij : [dij, -dj,] -, R
((i, j) E E) are pieccwise affinc and convex. The problen~ of minimizing a
sum-separable function on sct ST is known as the optimal-potential problem
in literature (cf. e.g., Rockafellar 1998, Sect. 1J). It is well-known that the
optimal-potential problcm with piccewisc affine and convex functions fi and
fij is dual to the convex-cost f low problem

subject to gi 5 C u,, - 1 u,, < Ci (i E V : i # 0)

whcre the functions fi and f; and the functions fij arid f,?;j are conjugatc to
each other (see Rockafellar 1998, Sect. 8G). Recall that a function 4' with

86 3. Relaxation-Based Algorithms

effective domain X* (i.e., $*(y) < oo for all y E X*) is conjugate to a function
4 : X + R if $*(y) = suPzEx(yTs - 4(x)) for all y E X*. For given functions
fi and fi j , the corresponding conjugate functions f,i and f& are piccewise
affirie as well. The functions f , , and f,*, (up to an additive constant) and the
lower and upper bounds ci and ci on supplies a t nodes i E V can be determined
by reversing the roles of breakpoints and slopes in passing from functions fi
and fij to their respective conjugates f,i and f;. The additive constants arise
from evaluating a convcnicnt point on the characteristic curves of fi and fij
(see Rockafellar 1998, Example 3 in Scct. 8F). The characteristic curve I' of
a convex function of onc variable is the set of all points (x, y) E R2 such that
y is between thc left-hand and the right-hand derivative of the function at x.
The convex-cost flow problem can be solved in 0(mn2 log[CiEv(l~ i I + I G i l)])
time by a generalization of the capacity-scaling algorithrri for the min-cost
flow problern (see Ahuja et al. 1993, Scct. 14.5).

The subcase where fi(Si) = wiSi for all i E V and fij(Sj - Si) = 0 for all
(i , j) E E leads to the followirig niin-cost flow problem (cf. e.g., Russell 1970):

Minimize 23 1.7

Wc now turn to the second special case, where convexiiiable objective
function f is assumcd to be continuously differentiable or sum-separable in
the nodes i E V of N. In that case, thc relaxation is amcnablc to an efficient
przmal steepest descent approach, which has been used by Schwindt (2000~)
for solving thc timc-constrained total earliness-tardiness cost probleni and
by Schwindt and Zimmermann (2001) for solving the tirnc-constrained net
present value problern. We first review some basic concepts required for what
follows. For notational convenience, we assume that function f possesses a
continuation f from an open set C c Rnf2 to R which is differentiable a t
the boundary points of ST. The dwectional derzvative o f f a t point S E ST in
direction z E Rn+2 is dcfincd to be

dfls(z) := lim
f (S + XZ) - f (S)

A10 X

if the limit exists. Now recall that function $ = f o y-l is convex and thus is
directionally differentiable in any direction a t any interior point of its domain
(cf. Shor 1998, Sect. 1.2). Since f = $J o y is a composition of a C1-function
and a finite convex function, f is directionally differentiable in any direction
at any interior point of its domain as well. The latter property implies that
thc limit in (3.3) always exists. The derivative df ls(z) in direction of the i-th
unit vector z = ei coincides with the right-hand Si-derivative dff /dSi(S) of

3.2. Convexifiable Objective Functions 87

f a t S, and thc Icft-hand St-derivative d-f/dS,(S) of f a t S equals -dfls(z)
where z = -e,. The vectors of right-hand and left-hand S,-derivatives of f
at S are denotcd by v + ~ (s) and V - f (~) , respectively. For fixed schedule S,
derivative dfls(z) is a positively homogeneous function g of z (i.c., g(az) =

ag(z) for all a > 0 and all z E EXnf2). Under our assumption that objective
function f is continuously differentiable or sum-separable in i E V, derivative
g(z) = dfls(z) at point S in dircction z takcs thc form

In particular, if f is continuously differentiable, then g(z) = V f (~) ~ z ,
where Vf(S) is the derivative of f at S . As we will see later on (see
Lemma 3.4), d+f /ds i (s) > d-f/dSi(S) for all i E V, which implies that
g(z) = CiEv max(aff/3Si (S)zi, a-f/dSi (S)zi). Conscqucntly, g is a convex
and thus sublinear function.

A dircction z E Rn+2 is called a descent direction at S E ST if df ls(z) < 0.
z is termed a feasible direction at S if for sornc E > 0, S + Sz E ST for all
0 < 6 < E. Due to thc convexity of ST, the latter condition is equivalent to
the cxistence of some E > 0 with S + ~z E ST. Now Ict for given schcdule
S E ST, E(S) := {(i , j) E E I Sj - Si = Sij} denote the set of arcs (i, j) E E
for which temporal constraint Sj - Si > Sij is active at S. Then direction z
is feasible at S preciscly if z" = 0 and z j - zi > 0 for all (i , j) E E(S) . A
(normalized first-ordcr) steepest feasible descent direction at S is a fcasible
descent direction z at S with llzll 5 1 minimizing derivativc g(z) = d f ls(z),
where) I . 1 1 is some vector norm in R'"2.

Now rccall that any local minimizer of f on ST is a global minimizer
as wcll (cf. Proposition 2.30d). Obviously, a schedule S can only be a local
minimizer of f on ST if there is no fcasiblc dcsccnt dircction at S. Thus, any
local minimizer S of f on ST must satisfy the following necessary optimality
condition (defining an inf-stationary point, see Kiwiel 1986):

inf{g(z) I zo = 0 and zj - zi > 0 for all (i, j) E E(S)} > 0 (3.4)

Condition (3.4) is sufficient for S to be a local minimizer of f on ST if f is
convex or if f is differentiable and v f (~) # 0. The objective function of the
nct prcsent value problem is an example of a convcxifiable and differentiable
objective function f for which V f (S) # 0 for all S E ST.

A classical approach to computing local rninimizcrs arc so-called steepest
descent algonthms, which construct a sequence S1, S2, . . . , S" of iterates such
that f (SIL+') < f (SF) for all p = 1 , . . . , v- 1. Steepest descent algorithms be-
long to the class of feaszble dzrectzon methods introduced by Zoutcndijk (1960).
Feasible direction mcthods offer an efficient way of solving nonlincar program-
ming problems with lincar inequality constraints (cf. e.g., Jacoby ct al. 1972,
Scct. 7.5, or Simmons 1975, Scct. 8.1), in particular if the directional deriva-
tives are easily obtained. Iterations of steepest descent algorithms consist of

88 3. Relaxation-Based Algorithms

two main phases: the direction-finding phase and the line-search phase (see
Hiriart-Urruty and Lemarkchal 1993, Sect. 11.2). Thc direction-finding phase
dctcrrnines a steepcst feasible desccrit dircction z at the current iterate S or
establishes that there is no feasible descent direction at S . Line search provides
a feasible destination S' = S + a z with f (S + az) < f (S). a is tcrmed the
stepszze. Algorithm 3.4 specifies a gencric (primal) stccpest descent algorithm.

Algorithm 3.4. Primal steepest descent algorithm

Input: MPM project network N = (V, E, S), objective function f
Output: Local minimizer S of f on set ST.

determine some time-feasible schedule S, e.g., S = ES;
repeat

determine normalized feasible direction z at S with minimurn y(z); (* direction-
finding phase *)
if g (t) < 0 then (* t is a descent direction*)

determine stepsize a in N a t S; (* line-search phase*)
set S := S + az;

until g(z) > 0;
return S;

We now deal with the direction-finding phase in more detail. The prob-
lem of finding a normalized stecpest feasible descent dircction at schedule S
rcads as follows:

Minimize g(z) I
subject to zj - z, > 0 ((i, j) E E(S))

z" = 0 (3.5)

ll4 5 1

The fcasible region of problem (3.5) is compact and noncmpty since z = 0
is always a feasible solution. Thc choice of vector norm 1 1 . 1 1 is of cru-
cial importance for the cfficicncy of the steepest descent algorithm. For
what follows, wc assume that 1 1 . 1 1 is chosen to be supremum norm, i.e.,
llzll = llz/lco := maxzcv Iz,J, which means that normalization constraint
llzll < 1 can be stated as -1 < z, < 1 for all 2 E V. In this case, all constraints
of problem (3.5) are linear, and (3.5) can easily be transformed into a lincar
program by introducing an additional variable y, for each E V togcthcr with
the constraints y, > d+f/dS, (S)z, and y, > d-f / d ~ , (~) z , and replacing g(z)
wit11 CtEV YZ.

In the following wc considcr a rclaxation of problem (3.5) which can bc
solved in linear time. To this end, we again assume that llzll = 1 1 ~ 1 1 ~ , but wc
only consider a subset of the tcmporal constraints that are activc at S. Tllc
active temporal constraints to be taken into account are chosen such that tlic

3.2. Convexifiable Objective Functions 89

corrcsponding rows of the cocfficicnt matrix are linearly independent. As it is
well-known from thc thcory of network flows, the directed graph G = (V, EG)
whosc arc set EG contains the arcs belonging to thc selected active temporal
constraints represents a spanning forest of project network N (sec, e.g., Ahuja
et al. 1993, Sect. 11.2). Proposition 2.2813 tells us that G can be choscn to be
a spanning tree of N prccisely if S is a vcrtcx of ST. The steepest descent
problem (SDP) at schedule S can now be formulated as follows:

Minimize g(z) I
subject to zj - zi > 0 ((i, j) E EG)

zo = 0
(SDP)

- 1 < z , < 1 (i E V)

A direction z solving steepest descent problem (SDP) is called an optimal
direction at S . Of course, we have to pay a price for the efficiency with which
(SDP) can be solved. At degenerate points S of ST, where EG c E(S) , optimal
directions may no longer be feasible dircctions at S . In the latter case, line
search will provide the stepsize a = 0, and the set of selected activc constraints
is modified without leaving thc current itcrate S . Since (SDP) is a relaxation
of problem (3.5), schedule S satisfies the necessary optimality condition (3.4)
if a = 0 is an optimal direction at S .

We show how for a given schedule S E ST the steepest descent problem
can be solvcd in lincar timc. The procedure is based on two fundamental
properties of problem (SDP). First, it always posscsscs an integral solution
and second, it can be decomposed into two independent subproblems with
linear objcctivc functions.

Proposition 3.3. Let f be a differentiable or sum-separable convexzjiable ob-
jective function. Then there is an integer-valued solution z to (SDP).

Proof. If f is differentiable or sum-separable, then objective function g(z) =

CiEv:r,>O af.f/aSi(S)zi + CiEV:r,<O d-f/dSi(S)zi. It follows that g is linear
on each octant and continuous. Sincc z = 0 is a feasible solution to (SDP),
the continuity of g implies that (SDP) is solvable. In addition, the coefficient
matrix of (SDP) is totally unimodular, which means that a feasible solution z
minimizing g on a givcn octant can always be chosen to be integral. 0

We proceed with the decomposition of the steepest descent problem (SDP)
into two independent subproblems where we only consider nonncgative di-
rections z > 0 or nonpositivc dircctions z < 0 arid which are respectively
denoted by (SDP') and (SDP-). For (SDP') objective function g(z) equals
~ + f (~) ~ z , and for (SDP-) we have g(z) = V-f(S)Tz.

subject to z j - zi > 0 ((i, j) E EG) (SDPf) 11 (SDP-)
zo = 0

90 3. Relaxation-Based Al,gorithms

We first nccd two preliminary lemmas.

Lemma 3.4. Let f be some convexifiable objective function and let S be a
time-feasible schedule. Then

Proof. We only considcr the case whcre S is an intcrior point of ST since by
assumption, f is differentiable at boundary points of ST. Let cp : ST + X
be a c l -d i f fe~mor~hism satisfying the conditions of Definition 2.29 and lct
4 = f o cp-l. Since cp is continuous, x = cp(S) is an interior point of X. Let
Vcp(S) be the Jacobian matrix of cp at point S . For given direction z E
applying the chain rule (see Shapiro 1990, Proposition 3.6 (ii) or Scholtes 1990,
Theorem 3.1) thcn provides df ls(z) = d$lZ(y) where y = Vy(S) a (rccall
that cp is continuously differentiable and that $ is finitc-valucd convex and
thus continuously Bouligand-differentiable at interior point of its domain).
We then have -dfls(-z) = -d$l,(-y). The convcxity of li, irnplies that
-d?l,l,(-y) < d$l,(y) arid thus -df Is(-z) < df ls(z) (see Hiriart-Urruty and

Lemarichal 1993, Sect. VI.l). The assertion follows from (s) = dfls(e,)
a-f and -(S) = -dfls(-e,). as, 0

Lemma 3.5. z is a feasible solution to (SDP) if and only if max(0, z) and
rnin(0, z) are feasible solutions to (SDP).

Proof. Let z+ := max(0, z) and z - := rnin(0, z). Trivially, for any direction
z E we have z = z f +z- .
Suficiency: Lct H denotc the coefficient matrix of constraints zj - > 0
((i , j) E EG), which coincides with the negative arc-nodc incidence matrix of
spanning forest G. If z+ and z- are feasible solutions to (SDP), then Hz+ > 0
and Hz- > 0, which irnplies that Hz+ + Hz- = H(z+ + z-) = H z > 0. In
addition, zo = z:+zi = 0 arid zi = z + + z i > 0-1 = -1 and zi = z + + z i <
1 - 0 = 1 for all i E V.
Necessity: Let z and z' be two feasible solutions to (SDP). Then it follows
from elementary calculus that max(z, z') and min(z, z') are feasible solutions
to (SDP) as well. By choosing z' = 0 we obtain the feasibility of directions
z+ and z-. 0

Theorem 3.6. Let zf be a solution to (SDPf) and let z- be a solution to
(SDP-). Then z = zf + z- solves problem (SDP).

Proof. Wc first show that g(z) = g(z+) + g(z-). As a consequcnce of
Lemma 3.4 wc have g(z) = CtEv rnax(a+f /a~ , (s) ~ , a-f/aS, (s)z,), from
which it follows that g is convex. The positive homogeneity of g then
implies the sublinearity and thus the subadditivity of g. Hence, g(z) =

g(z+ + z-) < g(z+) + g(z-). Since max(0, z) is a feasible solution to (SDP+)
(scc Lemma 3.5), we have g(zf) < g(max(O, 2)). Symmetrically it holds that

3.2. Conve~~fiable Objective Functions 9 1

Minimize g(zl) + g(zl')

subject to z: - zi > 0, zy - z," > 0 ((i , j) E EG)
zI, = z;: = 0

0 < zi < 1, - 1 < z , " < o (i E V)

Since in the latter problem the vcctors z1 and z" are unrelated, the problem
decomposes into the two independent problems (SDP+) and (SDP-) with
corresponding solutions z+ and z - . 0

For solving problem (SDP+) we make use of the following property of
forcsts. A forest G with at least one node possesses a source i with at most
onc successor or a sink i with exactly one predecessor. We call such a node i an
extremal node of G. Now let ci := d+f /ds i (s) be the right-hand Si-derivative
of f at point S . If there is a source i # 0 of spanning forest G with ci < 0,
then there is a solution z+ to (SDPf) satisfying z+ = 0. Conversely, if there
is a sink i # 0 of G with c, > 0, then z+ = 1 for any solution to (SDP+). In
both cases node i (and all incident arcs) can be deleted from G. If there is no
source i with ci _< 0 and no sink i with ci > 0, thcn V necessarily contains a
source i with at most one successor j (and ci > 0) or a sink i with exactly one
predecessor j (and ci < 0). In both cases, i is delayed exactly if j is delayed,
i.e., z+ = z: Thus, nodes i and j can be coalesced into an aggregate activity
with partial derivative ci + cj (which corresponds to the directional derivative
of f at S in direction z with z l = 1 for h E {i, j) and zh+ = 0, otherwise). We
perform these steps until all nodes aside from 0 have been deleted from G.

Algorithm 3.5 provides an O(n)-time implementation of the above pro-
cedure, where Pred(i) := { j E V I (j , i) E EG} and Succ(i) := {j E V I
(i, j) E EG} dcnote the sets of imrnediatc predecessors and successors of node i
in G. To achieve the linear timc complexity, we use an indices-representation
of forests, which is similar to the data structure discussed in Ahuja et al.
(1993), Sect. 11.3. We associate two indices predi and orienti with each node
i E V. For each component C of G, we identify a specially designatcd node,
called the root of C. If i is not a root node, pred, provides the predecessor of
i in G on the unique (undirected) path from the root to i, and the orientation
index orienti equals 1 if G contains arc (predi, i) and -1, otherwise. For a
root node i , we set predi := -1 and orienti := 0. In addition, the nodes i of G
arc stored in some depth-first traversal order of G, starting in each component
C at the root node. Then thc last unvisited node i E U with respect to that
order is always an extremal node of the subgraph Gu of G induced by set U.
If orienti < 0, i is a source of Gu, and if orienti = 1, i is a sink of Gu. For
orienti # 0, the predecessor j E Pred(i) or successor j E Succ(i), respcctively,

92 3. Relaxation-Based Algorithms

is given by pred,. Thc scts C (j) of coalesced nodes can efficiently be identified
via a labelling technique.

Algorithm 3.5. Direction-finding phase

Input: Objective function f , schedule S , spanning forest G of project network N.
Output: Solution z+ to (SDP').

set U := V, z+ := 0 , c := v + f (S) , and C (i) := { i) for all i E V;
while U # (0) d o

if U contains a node i f 0 with Pred(i) n U = 0 and ISucc(i) n UI < 1 then
set U := U \ { i) ;
if c, > 0 and Succ(i)nU = { j) then set cj := c,+c, and C (j) := C (j) U C (i) ;

else
determine a node i E U , i # 0 with Succ(i) n U = 0 and Pred(i) n U = { j) ;
set U := U \ { i) ;

9: if ci > 0 then set z l := 1 for all h E C (i) ;
else set c, := cj + c, and C (j) := C (j) U C (i) ;

return z+;

The mirror problem (SDP-) can be solved by a similar procedure whcrc z+
is replaced with z-, vector c is initialized with the left-hand derivative VPf(S)
at schcdulc S, the rolcs of prcdcccssors and successors in G are reversed, and
-

zh is put to -1 on line 9. Theorem 3.6 says that z = z+ + z - is an optimal
direction at S .

In general, the line-search phase at schcdulc S is performed by cornput-
ing an optimal stepsize u > 0 such that destination schedulc S' = S + a z E ST
minimizes f on the line segment t in ST passing through S in direction z . In
certain cases, however, it is more efficient to proceed with a suboptimal de-
scent step (see Jacoby et al. 1972, Sect. 5.1) because first, finding an optimal
stepsizc is expensive or second, moving to a minimizer S' on line segment e
may cause a zigzagging phcnomcnon. Schwindt (2000~) and Schwindt and
Zirrimermann (2001) have used the following stepsize u in their steepest de-
scent algorithms for the total earliness-tardiness cost and the net prcscnt valuc
problems. Each activity i E V with z, f 0 can at most be shifted until some
temporal constraint S, - S, > S,, with (i, j) $ EG becomes active, i.e.,

ul(i) may be cqual to 0 if S is a degenerate point of ST. If f is not binary-
monotone (see Subscction 2.3.1), we stop shifting i when crossing a kink of f ,
i.e.

a- f a+f
a < uz(i) := min{ul > 0 I -(S + a'z) < - (S + a'z)) as, as,

where for conveniencc we dcfinc min 8 := oo. Notc that we have minZEv a2(i)
= min{a' > 0 I -dfls+,l,(-z) < dfls+,f,(z)}.

3.2. Convexifiable Objective Functions 93

Accordingly, stepsize a is chosen to be

a = min(min a1 (i) min a2 (i))
~ E V ' ~ E V

where az(i) := oo for all i E V if f is binary-monotone. For thc gcncral case
of an objectivc function that is neither piecewise affine nor binary-monotone,
we in addition have

When moving from S to destination S' = S + az , spanning forest G is
updated as follows. At first, we dclctc all arcs (g, h) from G for which zh > z,.
If a = a1 (i) for somc i E V, a ncw tcmporal constraint S, - S, > 6,, becomes
active and the corrcsponding arc (i, j) is added to G.

For the time-constrained net present value problcm, Schwindt and Zim-
mermann (2001) have shown the following plausiblc statement, which readily
carries over to thc morc gcncral casc of piecewise affine or binary-monotone
objective functions f .

Proposition 3.7 (Schwindt and Zimmermann 2001). If in Algorithm 3.3
the initial schedule is chosen to be the earliest schedule ES and the stepsizes a
are calculated according to (3.6), then at each iterate S there is a solution z
to steepest descent problem (SDP) with z > 0.

Under the assumptions of Proposition 3.7, it is thus sufficient to solve sub-
problem (SDP+) for computing optimal directions z.

For piecewise affine or binary-monotone objective functions, the number
of iteratcs needcd to reach a schedule S satisfying necessary optimality con-
dition (3.4) can markedly be decrcascd by using an acceleration technique.
Consider the spanning forest G arising from deleting all arcs (i, j) with zj > zi
and let i be an activity with a = min(al(i), a2(i)). All componcnts C of G
consist of nodes j with identical zj. If there is a componcnt of G which does
not contain node i and for whose nodcs j we have zj # 0, those nodes can
be shifted further without recomputing a new steepest descent direction. By
shifting the components in order of nondccrcasing minimuni slacks between
component nodes i and nodcs j with zi > zj, we obtain the acceleration step
displayed in Algorithm 3.6. If the one-sided Si-derivatives of f arc obtained in
constant O(1) time, the algorithm can be implemented to run in O(m log m)
timc by maintaining a Fibonacci hcap of arcs (i , j) E E with zi > z j and
a Fibonacci heap of nodes i E V with zi # 0 that are sorted according to
nondecrcasing slack timcs iLsi6a1 and o2 (i), respectively.

We finally notice that if f is binary-monotone arid z > 0, thc resulting
destination schcdule S is always a vcrtcx. Furthermorc, it can be shown that
in case of regular and in case of so-called antiregular objectivc functions f ,
which arc componcntwise nonincrcasing in start times S,, the steepest descent
algorithm with the acceleration step included reaches the respective minimiz-
ers ES and L S after one iteration, indcpcndcntly of thc initial schedule chosen
(see Schwindt and Zimmcrmanri 2001).

94 3. Relaxation-Based Algorithms

Algorithm 3.6. Acceleration step

Input: MPM project network N = (V, E,6) , schedule S , direction z , spanning
forest G of project network N.

Output: Destination schedule S, updated spanning forest G.

for all (i, j) E Ec with zj > z, do set Ec := Ec \ {(i , j)) ;
while z # 0 do

determine a node i E V with zi f 0 and minimum slack u = min(ul(i), u2(i));
if u = u ~ (i) then (*update spanning forest G *)

set Ec: := Ec: U {(i, j)} for some arc (i , j) E E with z, > z1 and 'J ~ t ~ ~ . ' i ~
7

= u(2);
determine node set C(h) of component with i E C(h);
for all g E C(h) do set Sg := Sg + a and z, := 0;

return schedule S ;

3.2.3 Solving the Relaxations: The Dual Approach

Let p bc a relation in activity set V to be extended by a minimal delaying
mode { i) x B in the course of Algorithm 3.3. For computing a minimizcr on
the reduced search space ST(pl) of the resulting relation p1 = p U {{i) x B),
it is often more expcdient to usc a dual approach rathcr than rc-pcrforming
the primal steepest descent algorithm from scratch. The basic principle of the
dual flattest ascent approach is to start with tlie minimizer S of f on ST(p)
and to perform an outer approximation towards set ST(pl), where the dis-
tance to ST(pf) is stepwise decreased a t locally minimal cost. More precisely,
at each iteration we considcr moving in fcasiblc directions z such that first,
zj - zi 2 1 for all j E B and second, the directional derivative g(z) a t itcratc S
is minimum. We refer to such a direction as a flattest feasible ascent direction
a t S. Lct A(S,ST(pl)) := infS,EST(p,) llS1 -Slim = niaxjcB(Si +pi - Sj)+ =
(Si + pi - minjEB Sj)+ denote the distance between S and sct ST(pl). Thc
first condition ensures that A(S + a z , ST(pl)) < A(S ,ST(p l)) provided that
stepsize a > 0, whcrcas the second requirement means that the first-ordcr ap-
proximation of the increasc in thc objcctivc function valuc whcn moving from
S to S + a z is minimum. We noticc that if f is not a convcx and piecewise
affine function, this increase may also be negative, and thus in the general
casc we have to consider normalzzed flattcst asccnt directions z a t S .

Algorithm 3.7 shows a generic flattcst asccnt algorithm, where for simplic-
ity we assume that p = 0 and # 0. At each iteration of the algorithm
wc first remove those activitics J from minimal delaying alternative B for
which precedencc constraint S3 > S, + p, has already been enforced. The arcs
(i, j) corrcsponding to tlie latter precedence constraints are added to proj-
ect network N in order to ensurc that tlicy arc observcd a t all subscquent
iterations. Ncxt, we compute a normalized flattcst ascent direction z a t S.
If B = 0 and g(z) = 0, we have rcachcd sct ST(pl) and there is no feasible

3.2. Convexijiable Objective Functions 95

dcsccnt direction z at S . Otherwise, we determine an appropriate stepsize a,
movc to destination schedule S + az , and put S := S + az .

Algorithm 3.7. Dual flattest ascent algorithm

Input: MPM project network N = (V, E, 6), objective function f , time-optimal
schedule S, minimal delaying mode { i) x B .

Output: Local minimizer S o f f on set ST({ i) x B) .

repeat
for all j E B with Sj 2 S, + p , do

remove j from set B and add arc (2, j) with weight b,, = p., to N;
detern~irie normalized flattest feasible ascent direction z at S ; (* direction-
finding phase *)
if B # 0 or g (z) < 0 then

dcterrnine stepsize u in N at S; (* line-seardl phase *)
set S := S + u z ;

until B = 0 and g (z) = 0;
return S;

In what follows, we study the direction-finding and line-search phases in
more detail. During thc direction-finding phase of the algorithm we have
to determine a flattest feasible ascent direction z a t the given itcratc S. In
analogy to (3.5), the latter problem can bc formulated as follows, where {i) x B
is the minimal delaying mode under consideration:

Minimizc g(z)

subject to zh - zg 2 0 ((g, h) E E(S))
z" = 0 (3.7)

z j - z i > l (~ E B)

llzll 5 1

The normalization constraint llzll < 1 may be deleted if f is convex and piccc-
wise affinc (thc objcctive functions of the total inventory holding cost and total
earliness-tardiness cost problems are examples of such an objcctivc function).
We notice that in contrast to thc stecpcst descent problem (3.5), problem (3.7)
does not ncccssarily posscss a feasible solution. It is casily sccn, however, that
under the assumption that relation p' is timc-feasible, i.e., ST(p l) # B, there
is always a flattest ascent direction at S .

In analogy to the primal stecpcst descent algorithm treated in Subsec-
tion 3.2.2, we choose the vector norm 11 . 11 in (3.7) to be the supremum norm
and rclax thc problcm by rcplacing the arc set E(S) belonging to all active
constraints at S with the arc set EG 2 E(S) of some spanning forcst G of
project network N. The resulting problem will be referred to as the flattest
ascent dzrectzon problem (F A P) at S .

96 3. Relaxation-Based Algorithms

Minimize g (z)

subject to z,, - z, > 0 ((g ,h) E EG)

z,J = 0 I (FAPI

3 - z i > l (j E B)

- 1 < ~ \ , < 1 (~ E V)

A solution z to (FAP) is again called an optimal direct.ion, at S. Our approach
to solving the flattest ascent direction problem is based on a decomposition of
the problem into two subproblems, where we respectively enforce all activities
j E B to be right-shifted (i.e., z j = 1) or activity i to be left-shifted (i.e.,
zi = -1). The problems where in (FAP) we replace zj - zi > 1 (j E B) by the
corresponding constraints zi = 0 and zj = 1 (j E B) or z, = -1 and z . 3 > - 0
(j E B) are denoted by (FAPf) or (FAP-), respectively.

Proposition 3.8. Flattest ascent problem (FAP) is unsolvable if and only if
both problems (FAPf) and (FAP-) are unsolvable. If (FAP) is solvable, it is
solved by any solution zf to (FAPf) or by any solution z- to (FAP-).

Proof. Analogously to the proof of Proposition 3.3 it can again be shown that,
if (FAP) is solvable, there exists an integral solution z to (FAP). In the latter
case, zi may assume the two values 0 and -1. If zi = 0 , we have z j = 1 for
all j E B . For zi = -1, the constraints z j - zi 2 1 (j E B) turn into z j > 0

(j E B) . 0

As a consequence of Proposition 3.8, an optimal direction z a t S can be
computed by solving both subproblems (FAPf) and (FAP-) and choosing
z = z+ if g (z f) < g(z-) and z = z-, otherwise (where we write g (z f) = oo
or g(z-) = cc if the respective subproblem is unsolvable). Like the steepest
descent problem (SDP), problem (FAP+) can be solved by using Algorithm 3.5
for (SDP+) and its analogue for thc mirror problem (SDP-). To this end, we
put c, := oo and c, := - m for all j E B when we apply Algorithm 3.5, and
we put c, := -cc and c, := oo for all j E B when using the algorithm for
the mirror problem. Problem (FAP-) can be dealt with analogously. In sum,
computing an optimal direction z a t S necessitates four calls to the direction-
finding algorithms from Subsection 3.2.2 and thus can again be achieved in
linear time.

The following proposition shows that if a t current iterate S moving in any
feasible descent direction z a t S would increase the distance between S and
ST(p l) , then (FAP) can be solved by only one application of Algorithm 3.5
and its adaptation for the mirror problem. It can easily be seen (cf. Schwindt
2000c) that the conditions of the proposition are satisfied at each iterate if f
is convex and piecewise affine.

Proposition 3.9. Let S be a time-feasible schedule and assume that for given
minimal delaying mode { i) x B, z = 0 solves the steepest descent problem

3.2. Convexzfiable Objective Functions 97

(SDP) at point S with additional constraints zj - zi > 0 for all j E B. I j
(FAP') is solvable, it is solved by some direction zf > 0, and if (FAP-) is
solvable, it is solved by some direction z- < 0.

Proof. Let z' be an optimal solution to (FAPf). Sincc zf := max(0, z') sat-
isfies all constraints of problem (SDP) (compare the proof of Lemma 3.5)
and Z: - z: = 1 for a11 J E B , zf is a feasiblc solution to (FAP)+ as
wcll, and thus from the optimality of z' it follows that g(z+) > g(zl). More-
over, dircction z" := min(O,zl) is a feasible solution to problem (SDP) with
z, - z, 2 0 for all J E B. For Z' wc have g(zl) = CZEV t:>O aff/asZ (s)z: +
CZtV a-f/i3sz(s)z; = g(z+) + g(zl'). Since the optimal objcctivc func-
tion value of problem (SDP) with z, - z, > 0 for all j E B equals 0, it holds
that g(z") > 0. We conclude that g(zf) = g(z') - g(zl') < g(zl), which duc
to g(z+) > g(zl) provides g(z+) = g(zl). From the feasibility of direction zf
then follows the assertion. The proof for problem (FAP-) is analogous, where
z- := rnin(0, z') and z" := rnax(O,zl). 0

For given optimal direction z , the line-search phase yields an appropriate
stepsize a > 0 such that

for all j E B. as (j) is the amount by which the time lag between the starts
of activities i and j has to be increased for satisfying precedence constraint
Sj > &+pi. In addition, a is chosen such that destination schedule S' = S+az
is time-feasible and we do not move beyond a kink of g, i.e.,

a = rnin(min al (h) , min a 2 (h) , min a3 (j))
h t V ~ E V J E B

By providing the enumeration schcmc given by Algorithm 3.3 with a search
strategy, consistcncy tests, and lower bounds, wc obtain a branch-and-bound
procedure for problem (P) with convexifiable objective function f . For thc
same reasons as in Subsection 3.1.3 it is generally expedient to store list Q of
unexplored enumeration nodes in a stack, LC., to perform a depth-first search.
Sincc the consistency tests discussed in Subsections 1.2.4 and 1.3.4 do not refer
to the objective function, we may again apply all those tests in principlc. The
effectiveness of a givcn test, however, among other things strongly depends on
the particular objective function under consideration. As for the case of regular
objective functions, the objective function value f (S) of a niinirnizer S of f on
some search space ST(p) may again servc as a lower bound lbO on the objective
function value of thc bcst fcasible schcdulc in ST(p). Sclle (1999) and Kimms
(2001b) have used the technique dcviscd by Mohring ct al. (2003) based on
Lagrangean relaxation of thc rcsourcc constraints (see Subsection 3.1.3) to

98 3. Relaxation-Based Algorithms

compute lower bounds for the net present value arid total earliness-tardiness
cost problems, respcctively, with rcncwablc resources.

Sometimes relations p can be excluded from further consideration because
thcy are dominated by other relations p' in the scnsc that either the absence
of feasible schedules in ST(pl) excludes the existcrice of fcasible schedules in
ST(p) or the minimum objective function value of the best fcasiblc schedule
in ST(pl) can bc proved to be not greater than for the best feasible schedule
in ST(p). The simplest type of dominance between relations is given by the set
inclusion of relation polytopes: relation p' doniinates p if ST(p) C ST(pl). Since
such dominance rdes define a reflexive relation in tlie set of relations, one has
to ensure by appropriate tic-breakers that "cross-pruning" (i . ~ . , rclation p'
dominates relation p and vice versa) does not occur. The branch-and-bound
algorithm may apply several dominance rules to newly generated relations p
with corresponding minimal delaying mode {i) x B.

The first dorninance rule is as follows (cf. Dc Reyck arid Herroelen 1998~) .
We add all activities h E A(S, t) \ B with djh 2 0 for sonic j E B to set B
because they are delaycd as wcll when shifting activities j E B behind the
completion of activity i. If there is a minimal delaying alternative B' E B with
B1 c B , relation p is dominatcd by relation p' belonging to minimal delaying
mode {i) x B'. The second dominance rule refers to a (possibly induced)
minimum time lag between activity i and some activity i' of a delaying mode
(2') x B with the same minimal delaying alternative. If eithcr (1) d,,, +pi > pi,
or (2) dili + pi = pi1 and (as tie-breaker) i1 < i, then relation p can be
fathomed because tlie conipletiori time of activity i is greater than or cqual
to the completion time of activity i'.

Whereas the first two rules establish dorninance between child nodes p of
one and the same parent node, the following subset-dominance rules compare
the recent child nodes p with (arbitrary) relations p1 from which we have
branched formerly or which remain on stack Q. The first subset-dominance
rule has again been proposed by De Reyck and Herroelen (1998a). If the whole
search space ST(pl) of a relation p' has been explored and if p' is a subset
of p, relation p can be fathomed. This rule can be implemented to run quite
efficiently by exploiting two properties of the enumeration trcc (see Schwindt
1998~) . First, p' c p" for all descendants ,ol' of relations p' and second, in
case of a dcpth-first search thc parents p" of relations p' with C-maximal
cornplctely explored search spaces ST(pl) arc ancestors of p.

Ncurnann and Zimmermann (2002) have uscd a generalization of the lattcr
rule in their branch-and-bound algorithm for the net present value problem
with renewable resources. Comparing relations p and p' docs not take into
account the time lags that are induced by the distance matrix D . In other
words, we may have ST(p) 5 ST(pl) though p 2 p'. Rather, condition ST(p) C
ST(pl) can be checked by (elementwise) comparing the corresponding relation

matrices D(p) and D(pl), i.e., ST(p) SI.(pi) precisely if d$ 2 d$ for all
i , j E V.

3.2. Conve~ifiable Objective Functions 99

The following subset-dominance rule by Schwindt (1998~) compares thc
reccnt child nodes p with relations p' on stack Q. If Q contains a relation
p' p that is not an ancestor of p, then relation p can be deleted bccausc
ST(p) C ST(pf). This rule offers the advantage that no additional mcmory is
required for storing enumeration nodes already visited. Of course, the rulc can
also bc applicd in a way to comparc relation matriccs rather than relations.

3.2.5 Additional Notes and References

In this subsection we briefly survey procedures for project scheduling with
specific convexifiable objectivc functions and gcncral tcrnporal constraints. We
first deal with primal algorithms for thc time-constrained case, which may be
used for solving the resource relaxation of problcm (P). Kamburowski (1990)
was probably the first who studicd the time-constrained net present value
problem with general minimum and maximum time lags betwccn the start
times of activities. He has proposcd an adaptation of the approach by Grinold
(1972) for ordinary precedence constraints to the case of gcncral tcmporal
constraints. Grinold's proccdure is based on the transformation of the prob-
lem into a linear program by specifying a C1-diffeomorphism p which satisfies
the conditions of Dcfinition 2.29. Using specific properties of the linear pro-
gram, the problem is solved by a vcrtex-following algorithm, the methods by
Grinold (1972) and by Kamburowski (1990) differing in the pivot rule used.
De Rcyck and Herroelen (1998b) have generalized the recursive-search pro-
cedure by Herroelen et al. (1996) for the precedence-constrained nct prescnt
value problem to the case of general temporal constraints. Starting at the
carliest schedule, the activities of subtrecs rcpresenting active temporal con-
straints and possessing a negative net present value arc stcpwisc dclayed in
order to increase the net present value of the project. In contrast to all othcr
proccdurcs, the tcrnporal constraints are represcnted by thc distancc matrix,
i.c., their transitive closure, rather than by the project network. Neumann
and Zimmermann (2000) have combined Kamburowski's procedure, equipped
with a new pivot rule, and a preprocessing method proposed by Herroelen
ct al. (1996). Tlic latter method delays all terminal activities with negative
cash flows up to their latest start time (an activity is called terminal if it does
not havc successors in project network N aside from the project termination
event n + 1).

Tablc 3.3 compiles the results of an experirnental performance analysis
comparing the algorithms for the tirnc-constrained nct present value prob-
lcm. The rows "Grinold (1972)" and "CPLEX" refer to the adaptation of
Grinold's proccdurc to general tcrnporal constraints with thc original pivot
rule and the primal simplex algoritlirn implemented in LP solver CPLEX 6.0
(among the different LP solvers available in the CPLEX package, the primal
simplex method has shown thc best pcrformancc). Thc pcrformancc of thc
algorithms has been evaluated on the basis of two test sets generated with
ProGcn/rnax. The test sets contain 1440 and 90 projects with 100 and 1000

100 3. Re1axatior~-Based Algorithms

activities, respectively (see Schwindt and Zimmermann 2001 for details). The
results for the algorithm by De Reyck and Herroelen (1998b) arc quoted from
De Reyck (1998). We provide the mean number #it of iterations needed to
reach an optimal solution (where "n. a," indicates that this number is not
available) arid the corresponding mean computation time t,,, on an Intel 486
personal computer with 50 MHz clock pulse (n = 100) and a Pcntium personal
computer with 200 MHz clock pulse (n = 1000).

Table 3.3. Perforniarice of primal algorithms for the time-constrained net present
value problem

Algorithm n #i t k,,,

Grinold (1972)

CPLEX

Kaniburowski (1990)

De Reyck and Herroelen (1998b) 100 ri. a. 831 ms

Neumann and Zimmermann (2000) 100 12 17 ms
1000 219 1.0s

Schwindt and Zimmermann (2001) 100 4 10 ms
1000 17 0.6s

The results depicted in Table 3.3 permit several conclusions. First, the
methods based on Grinold's vertex-following algorithm show a much better
performance than the primal simplex method applied to the linearized prob-
lem. Second, the preprocessing method allows to save roughly one half of
the computation time. Third, the efficiency of the recursive-search method is
poor, which is presumably less due to the recursion itself than rather to the
use of the distance matrix, whose computation is expensive arid which causes
almost any vertex of set ST to be degenerate. As a consequence, the algo-
rithm performs many pivot steps that do not lead to a new vertex. Fourth,
the steepest descent method appears as the most efficient solution procedure
for the time-constrained net present value problem. If we reduce t,.,, by the
time needed for computing the earliest schedule, the speed-up factor between
the procedure of Neumann and Zirnmcrmann (2000) and the steepest descent
algorithm is morc than six (cf. Schwindt and Zimrnermann 2001). The small
value for #it can be mainly attribut,cd to the acceleration step, which for
n = 1000 reduces the number of iterations by more than 90 %. This reduc-
tion does not lead to an equally large saving in computation time because
the acceleration step is morc time consuming than simple line search (recall

3.2. Convexifiable Objective Functions 101

that the time complexity of thc acceleration step is O (m log m), whereas line
search can be done in O(m) time).

Next, we consider thc time-constrained total earliness-tardiness cost
problem. The only algorithm for this problem we arc aware of is the steepest
desccnt procedure proposed by Schwindt (2000~). For the special case where
only minimum time lags are prcsent, Vanhoucke et al. (2001) have devised a
rccursivc-scarch procedure, which is an adaptation of Herroclcn et al.'s algo-
rithm for the net prcsent value problcm. The time-constrained total earliness-
tardiness cost problcm can rcadily bc transformed into a linear program by
introducing two continuous variables ei 2 0 and ti > 0 for each activity i E V
along with the constraints e, > di - S, -pi and ti 2 Si + pi - di. The ob-
jective function of the linear program then is xiev(w,"ei + w:ti). Obviously,
for ST # 0 there is always an optimal solution satisfying ei = (di - Si - pi)+
and ti = (Si +pi - di)+ for all i E V, ix., ei equals the earliness and ti equals
the tardiness of i . Notice that the existence of an equivalent linear program
does not imply that the total earliness-tardiness cost is a linearizable objective
function in the sense of Definition 2.29, which is obviously not true.

Tablc 3.4 compares the primal simplex algorithm with the steepest descent
proccdure. The analysis is based on two test sets with 100 and 1000 activi-
ties, respectively, containing 90 instances each (details are given in Neumann
et al. 2003b, Sect. 3.5). The computations have been performed on a 200 MHz
Pentium personal computer.

Table 3.4. Performance of primal algorithms for the time-constrained earliness-
tardiness problem

Algorithm n #it tcpu

CPLEX 100 367 539ms
1000 5035 58.3s

Schwiridt (2000~) 100 15 7 ms
1000 139 3.8s

The results are in line with those obtained for the nct present value prob-
lem. Again, the stccpcst desccnt algorithm clearly outperforms the LP solver.
However, the gap bctwccn both approaches is less important, which is duc
to two reasons. First, though the linear program contains more variables and
constraints than for the net present value problem, the computation time de-
creases since the coefficient matrix of the constraints is now binary instead of
real-valued. Second, since the objectivc function is no longer binary-monotone,
the stepsizes for the steepest descent algorithm are typically much smaller,
which is also indicated by the large increase in the number of iterations.

We proceed to thc net prcsent value and total earliness-tardiness cost
problcrns with renewable or cunlulative resources. We restrict ourselves to

102 3. Relaxation-Based Algorithms

procedures that are dedicated to the case of general temporal constraints be-
tween activities. For a review of various types of precedence-constrained nct
present value problems and solution procedures we rcfer to the survey pa-
per by Herroelen et al. (1997). Algorithms for total carliness-tardiness cost
problcms with precedencc constraints and rencwable resources have becn de-
vised by Serafini and Speranza (1994a,b) and Vanhoucke et al. (2001). For
solving the resource relaxation, Serafini and Speranza cxploit the duality re-
lationship bctween the latter problcm and thc convex-cost flow problcm (see
Subsection 3.2.2).

We first consider the net present value problem with renewable
resources. The branch-and-bound algorithms by De Reyck and Hcrroelen
(19986) and Ncumann and Zimmcrmann (2002) are both based on tlic enu-
meration scherne discussed in Subsection 3.2.1. The algorithms mainly diffcr in
the proccdurcs for solving the relaxations at the enunieration nodes. Whereas
Dc Reyck and I-Ierroelen (19983) use their (primal) rccursive-search mcthod,
Ncumann and Zimmcrmann (2002) solve thc initial resource relaxation a t thc
root node by the primal steepcst descent algorithm by Schwindt and Zim-
rnerniann (2001) and the relaxations at desccndant nodes with a dual method
resembling the flattest asccnt algorithm dcalt with in Subsection 3.2.3. In
addition, De Reyck and Herroelcn (19983) and Ncumann and Zinimerniarlri
(2002) havc used disjunctivc activitics tests and dominance rules for reducing
tllc size of the enumeration tree. Sellc and Zirnrncrmann (2003) have proposed
a bidirectional priority-rule rnethod for approximatively solving large-scale
net prcscnt valuc problcms. Similarly to the heuristic by Franck (1999) for
thc project duration problcm (sce Subscction 3.1.4), one activity is scheduled
per iteration, where the essential difference is that ccrtain activities, namely
those with negativc cash flows, arc started at their latest feasible start timc.
An analysis of this schedule-generation scherne in Section 4.1 will show that
thc schedules obtaincd in this way arc stable, provided that no unschcduling
step is pcrformcd. Sincc thc sct of all optimal schedules may not contain a
stable schedule, the heuristic may systematically miss thc optimal solution.
A similar rcsult is known for the minimization of regular objective functions,
where the parallel schedule-generation scheme yields nondelay schedules (see
Kolisch 1996), among which thcre is not necessarily an optimal schedule.

Table 3.5 shows thc results of an experimental performance analysis where
we have conlparcd thc thrcc algorithms on a test set containing 1440 projects
with 50 activitics and 5 renewable resources each. A detailed description of the
remaining ProGen/max control parametcrs chosen can be found in De Reyck
and Herroelen (1998b). We have imposed a limit tLp, of 3 and 30 seconds on
the niaxiniuni running time of the branch-and-bound algorithms, which rcfcrs
to a Peritiuni personal computer operating at 200 MHz (for comparison pur-
poses, the computation times havc been scaled according to the clock pulse
ratio by a factor of 0.3 for De Reyck and Herroelen's branch-and-bound al-
gorithm arid by a factor of 2.5 for thc priority-rulc mcthod). Since De Reyck
and Hcrroelcn (1998b) only report on the number of instanccs for which the

3.2. Convexzjiable Objective A~nctions 103

branch-and-bound algorithm has completcd the cnumcration within the re-
spective time limit, the valucs pOpt and pi,, and the values pnOpt and punk
have been aggregated.

Table 3.5. Perfornlance of algorithms for the net present value problem with re-
newable resources

Algorithm tcpu Popt pans Pnopt Punk

De Reyck and Herroelen (1998b) 3s 58.1% 41.9 %
30s 75.5 % 24.5 %

Neumann and Zimmermann (2002) 3s 79.1 % 4.4 % 16.5 % 0.0 %
30s 85.1% 4.4% 10.5% 0.0%

Selle and Zimmern~ann (2003) 3ms 1.0% 4.4% 94.6% 0.0%

Not surprisingly, the branch-and-bound algorithm by Neumann and Zim-
mermann (2002) seems to be morc efficient than the earlier algorithm by
De Reyck and Hcrroclen (1998b). Thc improvcmcnt upon the latter algorithm
is probably to be attributed to the tremendous difference in thc timc ncedcd
for solving the relaxations. The dual method typically runs in a small frac-
tion of the time that is rcquircd for rc-optimizing from scratch the minimizer
with the primal stccpcst descent method aftcr the addition of a minimal de-
laying mode to the current relation. Morcovcr, thc primal mcthod is by far
less time-consuming than the recursive-search procedure (see Table 3.3). The
priority-rulc mcthod provides feasible schedules within a very short amount
of time. The small proportion pOpt of instances, however, for which the opti-
mal objective function value computed by the branch-and-bound algorithm
of Neurnann and Zimmermann (2002) can be found, indicates that the low
computational effort is paid for by some loss of quality. Nevertheless, experi-
cncc with the project duration problem docuniented in Franck et al. (2001b)
suggests that priority-rule methods may constitutc a valuable alternative to
exact procedures whcn coping with projccts comprising hundreds of activi-
ties. Finally, we notice that wc do not give a deviation Alb from some lower
bound lb on the minimum objective function value because the latter quan-
tity may be positive, zero, or negative. The development of a suitable index
measuring the mean remaining error of suboptimal solutions for this type of
problem seems to be an open issue in literature.

Starting from the representation of minimizers of a convcx objcctive func-
tion on relation polytopes as spanning forests G of thc project nctwork N,
Schwindt (2000b) has developed a neighborhood function for local scarch pro-
cedures (see also Ncumann et al. 2003~). Similarly to the steepest descent algo-
rit hrn from Subsection 3.2.2, the arcs of forest G correspond to active temporal
or precedence constraints. G is decoded into the corrcsponding time-feasible
schedule by computing a local minimizer S on the rclation polytope ST(p)

104 3. Relaxation-Based Algorithms

where p is the rclation in set V a arising frorn the arcs of G that belong to
precedence constraints (precedence arcs, for short). Two types of neighbor-
hood operations are considered, which transform forcst G into a neighboring
forest GI. If S is feasiblc, GI rcsults from G by deleting somc prcccdcncc arc.
Otherwise, a precedence arc may bc dclctcd or a ncw preccdcncc arc may be
addcd for which both the initial and terminal nodes arc contained in a forbid-
den activc set for S . The reason why precedence arcs may also be cancelled
cvcri if S is not resource-feasiblc is that duc to maxirrlum timc lags, it may be
necessary to pcrform backtracking before attaining a feasible solution. When
some prcccdcnce arc is deleted frorn G, the new rniriirnizer of f is determined
by applying the primal method starting at S . In case a precedence arc is added
to G, the dual method is uscd.

We have tested a simplc randomized best-fit search implcmcntation (cf.
Kolisch and Hartmarin 1999) of this approach for the total earliness-
tardiness cost problem with renewable resources. At each iteration the
algorithm movcs to the best neighboring forest. The quality of a forest G is
evaluatcd according to the objective function value f (S) of the corresponding
schedulc S and its degree of infeasibility measured in terms of the excessive
workload CkFRP J;(T-~(S, t) - Rk)+dt. In order to avoid cycling, the qual-
ity is randomly biased. Each time the local search gets stuck in a deadlock
where S is not yet resource-feasible and no additional precedence arc can be
added to G without gcncrating a cycle of positive length in the corresponding
rclation network N (p) , we return to the best schedule found thus far. 10%
of the computation time is allotted to the branch-and-bound algorithm by
Schwindt (2000~) for the computation of an initial feasible schedule serving
as starting-point for thc local scarch. If the branch-and-bound procedure fails
in finding a feasible solution within the imposed time limit, the search starts
at the minimizer of f on set ST.

The results for the branch-and-bound method and the best-fit search pro-
cedurc are given in Table 3.6. They have been obtained for the test set with
90 instances comprising 100 activities and 5 renewable resources already used
for the analysis of the algorithms for the time-constrained problcm (see Ta-
ble 3.4). Again, the tests have been performed on a 200 MHz Pentium personal
computer.

Table 3.6. Performance of algorithms for the earliness-tardiness problem with re-
newable resources

Algorithm tcpu popt PZVLS P n q t punk All,

Schwindt (2000~) 3 s 3.3 % 13.3 % 67.8 % 15.6 % 6.6 %
30s 5.6 % 13.3% 70.0% 11.1 % 6.5 %

100s 5.6% 13.3% 71.1 % 10.0% 6.4%

Schwindt (2000bI 83.4s 3.3 % 13.3% 75.6 % 7.8 % 6.0 %

3.2. Convexifiable Objective Functions 105

Comparing the results from Tables 3.1 and 3.6 suggests that the earliness-
tardiness problem is much more difficult to solve to optimality than the project
duration problem. The mean deviation Alb from the lower bound lbo arising
from the resource relaxation, however, indicates that the quality of the schcd-
ules found is comparablc to those computed for the project duration problcm.
This deviation can bc furthcr dccrcascd by stopping the enumeration after a
short amount of time and subscclurntly executing the best-fit search proccdurc
based on the neighborhood function of Schwindt (2000b).

We concludc thc subsection by corisidcring thc capital-rationed ne t
present value problem, where the project is executed with a limitcd bud-
get. In that case, the funds available for disbursement dcpcnd on thc initial
budget (possibly plus a credit line) and the difference of all past progrcss
payments arid paying outs. This situation frequently occurs in the building
industry, where the receipts from completed subprojects serve to financc suc-
ceeding subprojccts. It is readily seen that the cash balance can be interprctcd
as a cumulative resource with infinite storage capacity 3 and a safety stock
of R = 0. The initial inventory ro equals the project budget, and the rcsource
requirements r, of events i E V r , i + 0 coincide with the cash flows cf. This
project scheduling problem has been treated in an early paper by Doersch
and Patterson (1977), who haw devised an integer programming formulation
based on time-indexcd binary variables xZt being equal to one if t = St and

LS zero, otherwise. Thc objcctivc function thcn rcads CzEv Ct=bS, ~ f e - ~ ~ x , ~ ,
and thc rcsource constraints can bc written as

A priority-rule rncthod for solving the problcm has bcen proposed by Smith-
Daniels et al. (1996). The priority values are based on delay penalties, which
arise from solving the dual of the tirnc-constrained problem where the objec-
tive function is replaced by its first-order Taylor expansion (as it has bcen
shown by Russell 1970, the dual then represents a transshipment problem).

Schwindt (2000a) has addressed the capital-rationed problem as a net
present value problem with cumulative-resource constraints. His branch-and-
bound algorithm is based on the enumeration scheme from Subscction 3.2.1,
and the relaxations at the enumeration nodes are solved by the dual flattest
ascent method discusscd in Subsection 3.2.3. Kimms (2001a), Sect. 8.2, has
proposed a mixed-integer linear program for a gcncralization of thc problem
setting where residual cash is lent from one period to the next and scvcral
projects from a given portfolio are considered simultaneously. The objective
is to select the projects to be performed from the portfolio and to schedule
the selected projects in a way that thc cash balancc at planning horizon d is
maximized. Kolisch (1997) has investigated a variant of this problem where
in addition, cash can be borrowed a t an interest rate of a' > a but only

106 3. Relaxation-Based Algorithms

one project is considered. For a critique of thc underlying assuniptions of this
model wc refer to Kimms (2001a), Scct. 8.1.

Table 3.7 shows the results of an cxperimcntal performance analysis com-
paring the branch-and-bound algorithm with the CPLEX 6.0 MIP solver pro-
cessing Doersch and Pattcrson's integcr programming formulation. The four
test sets used consist of 90 instances each with 10, 20, 50, or 100 activities.
For the projects with 10 or 20 activities, the emphasis parameter of the MIP
solver has been put to opt imali ty, whereas for the projects with 50 arid
100 activitics, this parameter has been chosen to be f e a s i b i l i t y . The MIP
solver and the branch-and-bound algorithm have been stopped aftcr a maxi-
mum computation time of 100 seconds on a Pentium pcrsonal computer with
200 MHz clock pulse.

Table 3.7. Performance of algorithms for the net present value problem with one
cumulative resource

Algorithm n popt Ptns PTLOPL P u n k

Doersch and Patterson (1977) 10 73.3 % 13.3 % 0.0 % 13.3 %
20 50.0 % 0.0% 7.8 % 42.2 %
50 0.0 % 0.0% 5.6 % 94.4%

100 0.0 % 0.0% 0.0% 100.0 %

Schwindt (2000~) 10 74.4% 25.6% 0.0% 0.0%
20 74.4% 25.6% 0.0% 0.0%
50 75.6% 16.7% 1.1 % 6.7%

100 65.6% 8.9% 5.6% 20.0%

Tlic analysis clearly demonstrates the suitability of the cumulative-rcsourcc
concept for solving this typc of problems. Whereas the MIP solver is only ca-
pable of solving small problem instanccs of academic interest, the branch-and-
bound algorithm terminates the cnumcration within 100 seconds for almost
75 % of the projects with 100 activities. The instanccs with 10 and 20 activi-
tics are all either solved to optimality or shown to be unsolvable. It is worth
noting that in contrast to the case of renewable resourccs (see Table 3.5), the
difficulty resides rather in finding a feasible schedule than in proving optimal-
ity. Thus, developing advanced search strategies to overcome this difficulty
may constitute a valuable field of future research.

